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30-YEAR EVOLUTION OF MOBILE ROBOT NAVIGATION
& THE FUTURE OF EMBODIED INTELLIGENCE (1995-2026+)
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What is SLAM?
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» SLAM comprises the simultaneous estimation of the state of a robot equipped with on-board
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sensors, and the construction of a model (the map) of the environment that these sensors are
perceiving.

--- Past, present, and future of SLAM. Toward the robust-perception age, T-RO2017



What is SLAM?

Robust Localisation

SLAM System

» Spatial Al is the online problem where vision is to be used, usually alongside other sensors, as
part of the Al which permits an embodied device to interact usefully with its environment.

» SLAM, a continuously evolving and broadening field with progress marked by real-time
system-building, demos and open source, is the basis for working towards Spatial Al.

--- ProftAndrew Davison, talk at MIT 2025



SLAM Examples

Gaussian Splatting SLAM

Hide 1. J. Ki avison

Gaussian Splatting SLAM Scene Graph Reconstruction




SLAM for Robotics: Mobile Autonomy Outside the Lab

Vision-Language Navigation [Zantout2025/ROS] High-Speed Navigation [Ren20255R]



From Classic SLAM to Lifelong Navigation
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From Classic SLAM to Lifelong Navigation
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LIDAR SLAM [Jia02021TRO] Metric-Semantic Mapping [Jiao2024TASE]  Lifelong Navigation [Under Review]|

Some questions:

» Why does this transition happen?

» What are the new focus in lifelong navigation?

» What are the best candidates for scene representations?



Classic LIDAR SLAM

¥

I
— Raw LiDAR point clouds

/ LiDAR Map —

Iterative Closest Point [Arun1987PAMI]

0.75m Trajectory of Odometry

M-LOAM: Multi-LIDAR SLAM with uncertainty-ware mapping [Jiao2021TRO]

» Extrinsics as one of estiamted states
» Propagate errors (noise, extrinsic error, degeneracy) into map
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Classic LIDAR SLAM (2018-2021)

Walk through buildings ‘ . : X 1 O

Total Tength: 695m
Time: 12 minutes
"C‘frid si‘ze: 20m
Speed: | 2m/s

_ Drift</0.Im
Without loop closure

M-LOAM: Multi-LIDAR SLAM with uncertainty-ware mapping [Jiao2021TRO]

» Extrinsics as one of estiamted states
» Propagate errors (noise, extrinsic error, degeneracy) into map

11



Challenging SLAM Datasets (2021-2023)

FusionPortable Dataset for SLAM Evaluation [Jiao2022IROS]| [Wei20251IRR]

»Open questiones: is it possible to use one SLAM for all platforms and all enviroments?
»Data: 42km trajectories on 4 platforms, covering 10 challenging scenarios

»Motion patterns for different types of robots vary significantly

12



Challenging SLAM Datasets (2021-2023

C 2 fusionportable.github.io/dataset/fusionportable_v2/ * ® DY REE EHasex

FusionPortable Research Dashboarc

| FusionPortable V2

Overview

Usage Steps From Campus to Highway: A Unified Multi-Sensor Dataset for Generalized SLAM Across
Diverse Platforms and Scalable Environments

Sensors

Definitions of Coordinate Frame

News

Explanation of ROS Topic and

Message * (2025-09-28) The list of Related Works that have utilized the FusionPortable dataset has been updated.
Various Platforms and Scenarios « (20250410) Some rosbags are extracted as individual files and converted into the KITTI format. Click here
totry.

Ground-Truth Devices
* (20240629) The tutoial of senosr calibration (intrinsics and extrinsics) is provided. Click here to try.

« (20240508) Groundtruth poses of all vehicle-related sequences are postprocessed: eliminate poses

Third-View of Data Collection

Dataset Details and Download ) ,
Sl Saet Cial n) Dommios: characterized by high uncertainty.

Sensor Calibration Tutorial « (20240422) Data can be downloaded from Baidu Wang Pan with the code byj8.
Sensor Calibration Files « (20240414) All sequences, ground-truth trajectories, and ground-truth maps have been publicly released
Eiperanants If you find issues of GT trajectories and maps, please contact us o report here.

o * (20240413) A small simulated navigation environment is provied.
ools

* (20240408) The development tool has been initially released.
Known Issues

* (20240407) Data can be downloaded from Google Drive.
Related Works.

Publications

Overview

Contact

Usage Steps

1. Read through the overview of the FusionPortablev2 dataset: sensors, coordinate frames, and definitions of
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Impact of the FusionPortable Dataset
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SLAM-Enabled Products and Systems

‘ ."“‘ RN E
Drones AR Glasses Sweeping Robots

* Mature Geometric Perception: Localization and sparse/semi-dense serve as foundational
technologies for many real-world products.

= But Autonomy Gap: systems remain fragile and lack context as well as interaction, requiring
human intervention for long-term operation or recovery.
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Next-Gen SLAM: Spatial Memory for Embodied Navigation

-

l

Semantic Understanding

Task Versatility and Learning

Lifelong Autonomy
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Metric-Semantic Mapping

g2

¢ Correct path in semantics

Real-time metric-semantic mapping [Jiao2024TASE]

= GPU-accelerated volumetric mapping
= Bayesian update for noisy semantic labels
= Enhance the safety of robot navigation in unstructured environments



Metric-Semantic Mapping
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Real-time metric-semantic mapping [Jiao2024TASE]

=  GPU-accelerated volumetric mapping
= Bayesian update for noisy semantic labels
= Enhance the safety of robot navigation in unstructured environments
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New Focus: Lifelong Navigation
Lifelong Navigation

)
rﬁ Short-term Navigation (
(Static Environment) (Dynamic/Evolving Environment)

0 Session-
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Assumes static environment. Assumes dynamic environment. Robot accumulates experience, updates
Map used once, then discarded. its map, and performs sequential tasks without losing localization.
- £/ 8

What lifelong navigation focuses:

* Working in highly dynamic real-world scenarios
* Problems: long-term localization, semantic understanding, dynamic mapping, etc.

* Beyond accuracy evaluation: success rate, memory growth rate, etc.



Coincidence vs. Inevitability: Map as a type of Memory

Google DeepMind

2025-11-27

Evo-Memory: Benchmarking LLM Agent
Test-time Learning with Self-Evolving Memory

Tianxin Wei®!, Noveen Sachdeva?, Benjamin Coleman?, Zhankui He?, Yuanchen Bei', Xuying Ning!, Mengting
Ai', Yunzhe Li"!, Jingrui He!, Ed H. Chi2, Chi Wang?, Shuo Chen?, Fernando Pereira?, Wang-Cheng Kang? and

Derek Zhiyuan Cheng?

fWork done while at Google DeepMind, ! University of Illinois Urbana-Champaign, 2Google DeepMind
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Existing Solutions: Dense Mapping and Graph Extraction

i. Scan the environment ii. Process point cloud iii. Create navigation graph iv. Path planning & Follow
.= TRl 1 o [T ,’. iy

e

[Lee2024Science Robotics]

v/ Accurate results > Carefully data capture
v Well-defined pipeline > High storage overload
Time-consuming reconstruction
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Existing Solutions: Teach and Repeat

[Q1a02025ICRA]

Teach: user drives a robot which stores sparse visual information in a relative pose graph
Repeat: robot localizes by matching live visual data to map and steers to stay on path

v/ Well-defined pipeline Limited to the teach path
v/ Relaxing global consistency Time-consuming data collection

22






Our Solution: Sparse Map Representation




Our Solution: Sparse Map Representation
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' g N Graph

"= Map is represented as a three-layer topometric map.

= Submap is constructed by individual mobile devices integrated with odometry.

= Collaborative localization with 3D geometric foundation model
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How to Extend the Mapping Scale”

26



Our Solution:

Crowdsourcing Mapping
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Our Solution: Crowdsourcing Mapping

Large amount of

mapping data from Public Users
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Our Solution: Crowdsourcing Mapping
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OpenNavMap System:

Query Image

Collaborative localization Pipeline by Gathering Multi-Source Submaps
IROS2025 OWN Workshop Best Paper

Sequence
Matching

v

Open Navigation Map

A

Verificaiton

Scene Reconstruction and
Pose Estimation

S - (OO

Pose Graph Optimization

= A= A
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Experiments
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Dataset evaluation: 9 months, 37 sequences, 19km trajectories



Submap Construction
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Collaborative Localization and Map Merging

Pose Graph
Optimization =.

—
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| No Image I

Map Merging with More Submaps

34



Map Merging with More Submaps
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Map Merging with Shuffle Submap Orders
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Final Map Construction

== Aria Glass
== Vehicle

== Smartphone

————m e ——— == — —

== Aria Glass == Google Street View

Shopping
Center
Building
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LiteVloc: Enable Visual Navigation with the OpenNavMap

Map

Construction
—>

Meta Project Aria
AR Glass

Map-Lite Visual Localization for Image Goal Navigation [Jiao2025/CRA]

= Map: sparse and discrete map eliminats the dense, metrically-precise map construction.

= Hierarchical Vloc: first retrieve place, then estimate the relative pose.
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LiteVloc: Enable Visual Navigation with the OpenNavMap

Introduction

Imagine the robot is navigating its usual route
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Demonstration of Image-Goal Navigation

Zero-shot deployment
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SanD-Planner: Visual Path Planning

* Map-less and diffusion-based local path planning
for multi-layer scenarios

* The structural inductive bias provided by B-splines
drastically improves sample efficiency.

Context
embedding

Depth images
History depths (t-3...t)

Diffussion Critic
module (Cost evaluation)

20 denosing steps

Navigation Goal
Position

itic max:655.85 mim520-4{1
point goal:(6.07, —0.49)

Collision avoidance Climbing stairs Passing obstacles
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Grass

Metric
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Next-Gen SLAM: Spatial Memory for Embodied Al

M-LOAM: multi-LiIDAR SLAM

Semantic Mapping

OpenNavMap and LiteVLoc

FusionPortable Dataset
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