

SLAM for Robotics: Towards Lifelong Spatial Memory and Navigation in Unstructured Worlds

Jianhao Jiao

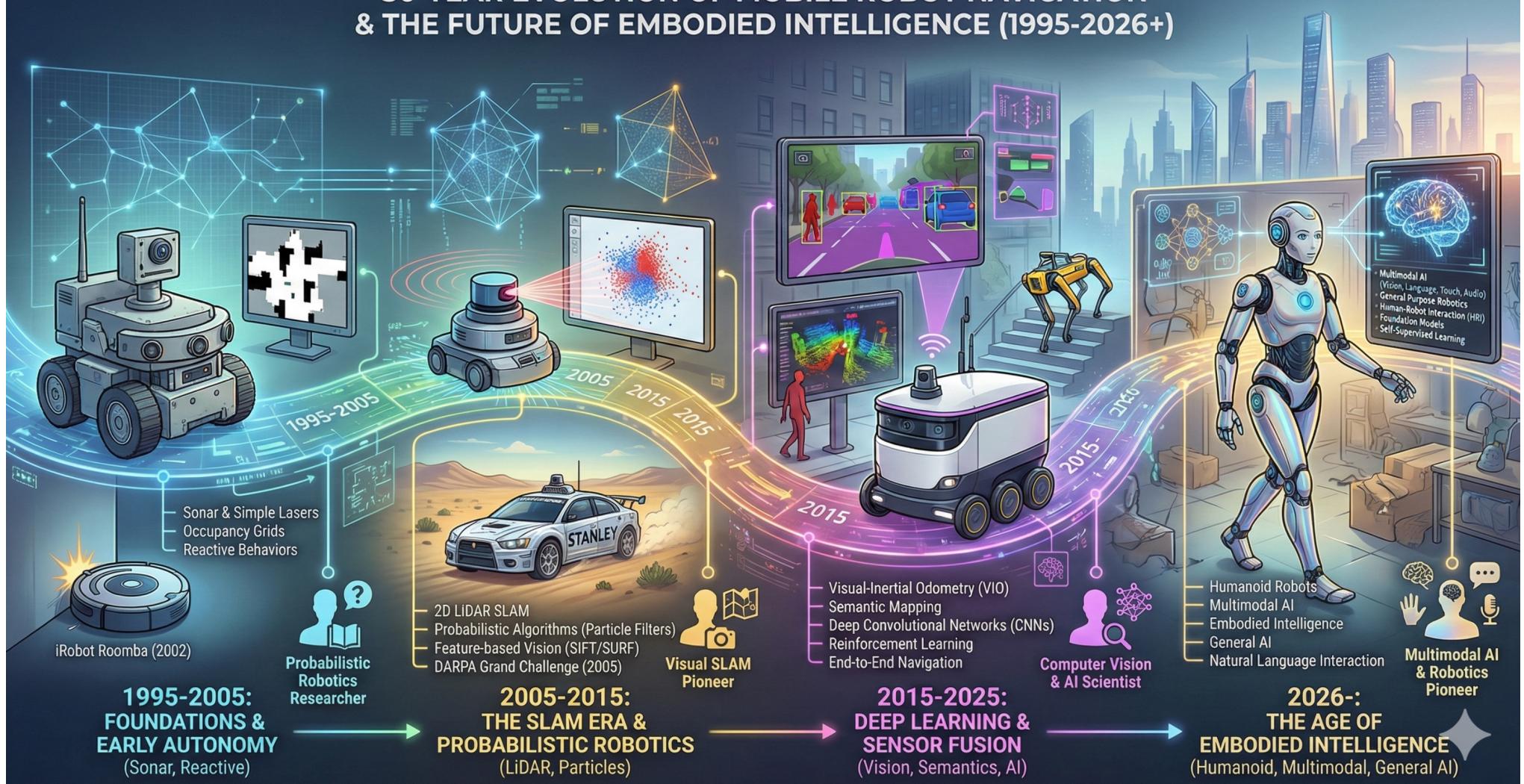
Senior Research Fellow

University College London-HK PolyU

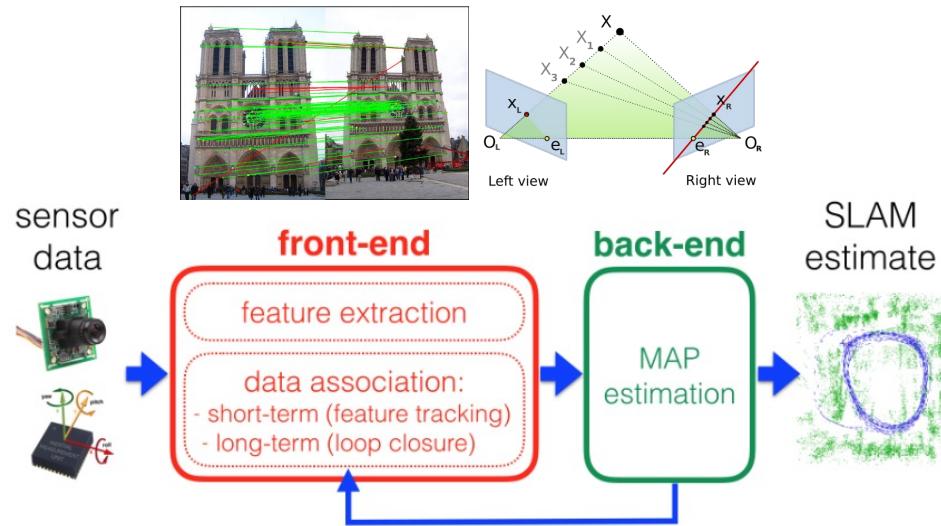
Email: jiaojh1994@gmail.com | Website: <https://gogojjh.github.io>

Invited by Prof.Junfeng Wu, CUHK-SZ
2026-01-30

30-YEAR EVOLUTION OF MOBILE ROBOT NAVIGATION & THE FUTURE OF EMBODIED INTELLIGENCE (1995-2026+)



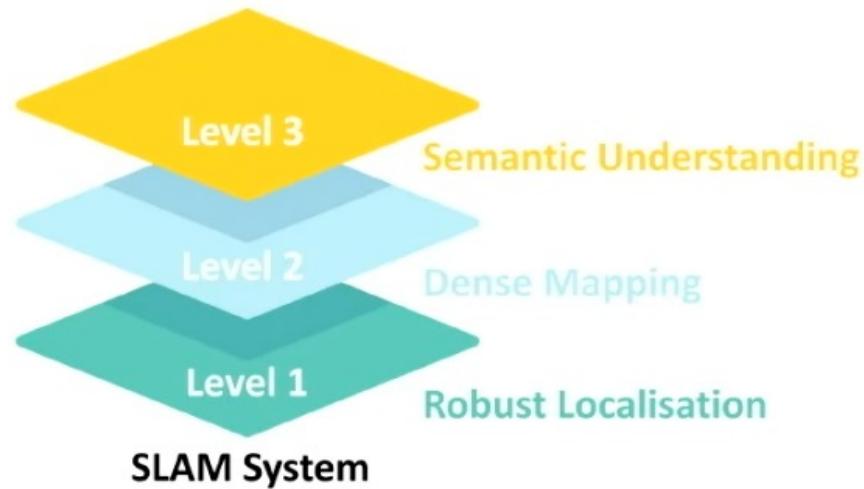
What is SLAM?



- SLAM comprises the simultaneous estimation of the **state** of a robot equipped with on-board sensors, and the construction of a model (the **map**) of the environment that these sensors are perceiving.

--- Past, present, and future of SLAM: Toward the robust-perception age, T-RO2017

What is SLAM?



- **Spatial AI** is the online problem where vision is to be used, usually alongside other sensors, as part of the AI which permits an embodied device to interact usefully with its environment.
- **SLAM**, a continuously evolving and broadening field with progress marked by real-time system-building, demos and open source, is the basis for working towards Spatial AI.

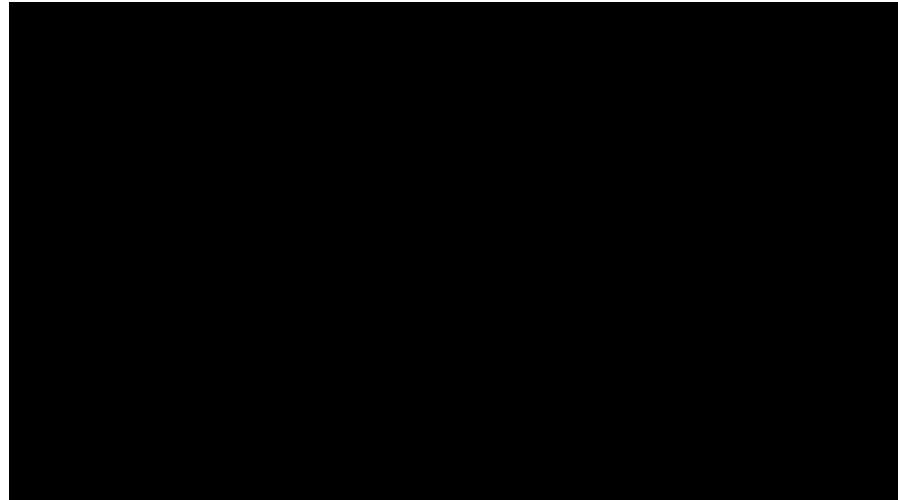
--- Prof. Andrew Davison, talk at MIT 2025

SLAM Examples

Gaussian Splatting SLAM [Matsuki2024CVPR]

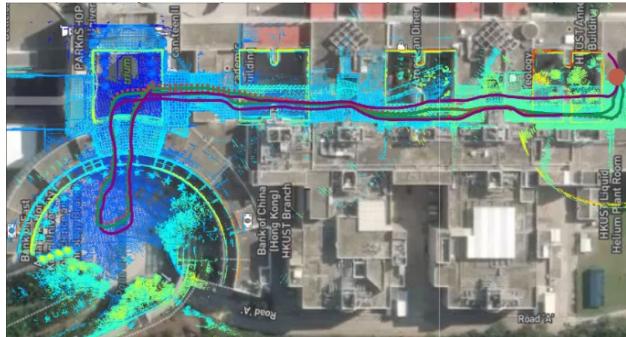
SLAM for Robotics: Mobile Autonomy Outside the Lab

Vision-Language Navigation [Zantout2025IROS]

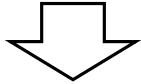
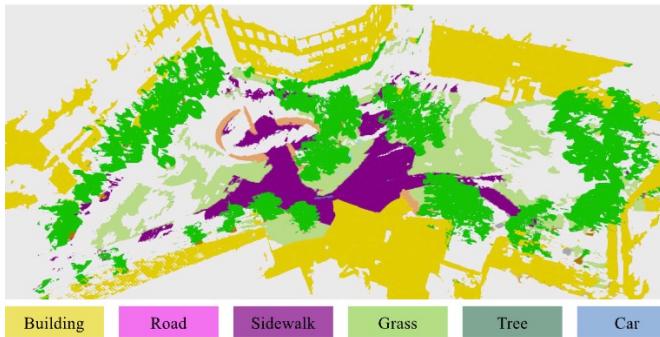


High-Speed Navigation [Ren2025SR]

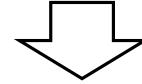
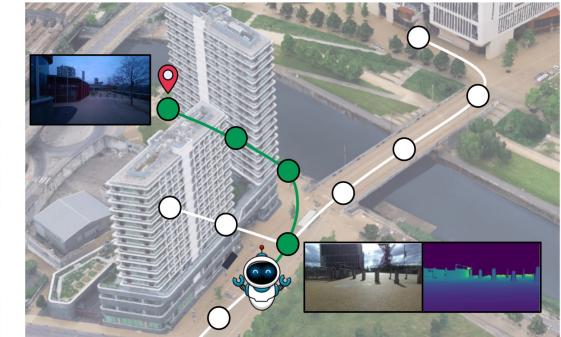
From Classic SLAM to Lifelong Navigation



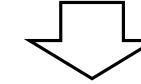
LiDAR SLAM [Jiao2021TRO]



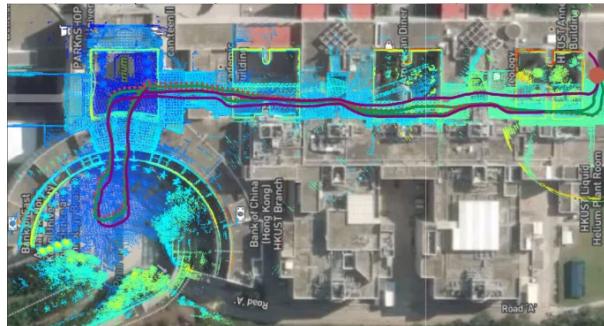
Metric-Semantic Mapping [Jiao2024TASE]



Lifelong Navigation [Under Review]



From Classic SLAM to Lifelong Navigation



LiDAR SLAM [Jiao2021TRO]

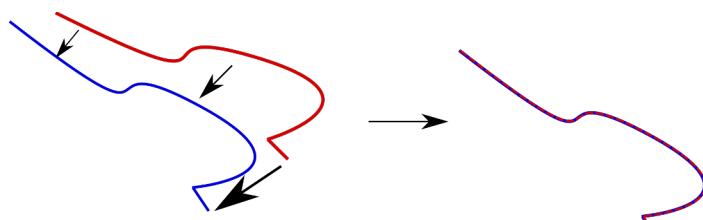
Metric-Semantic Mapping [Jiao2024TASE]

Lifelong Navigation [Under Review]

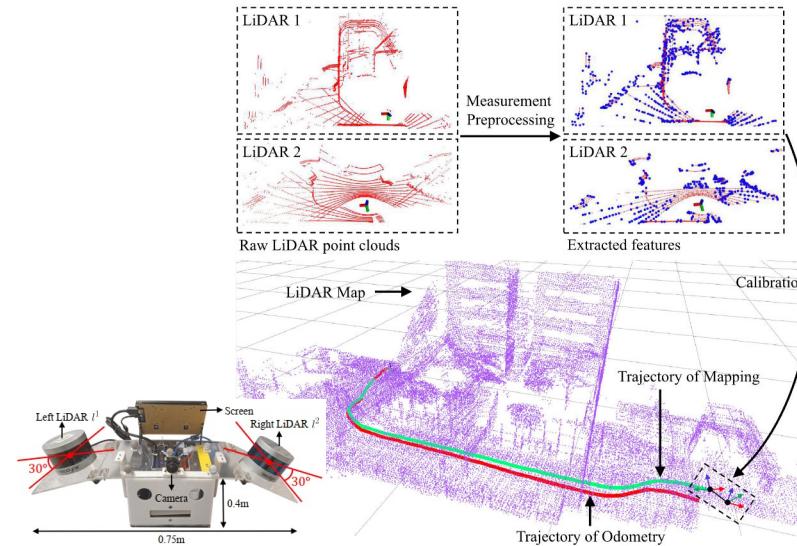
Some questions:

- Why does this transition happen?
- What are the new focus in lifelong navigation?
- What are the best candidates for scene representations?

Classic LiDAR SLAM



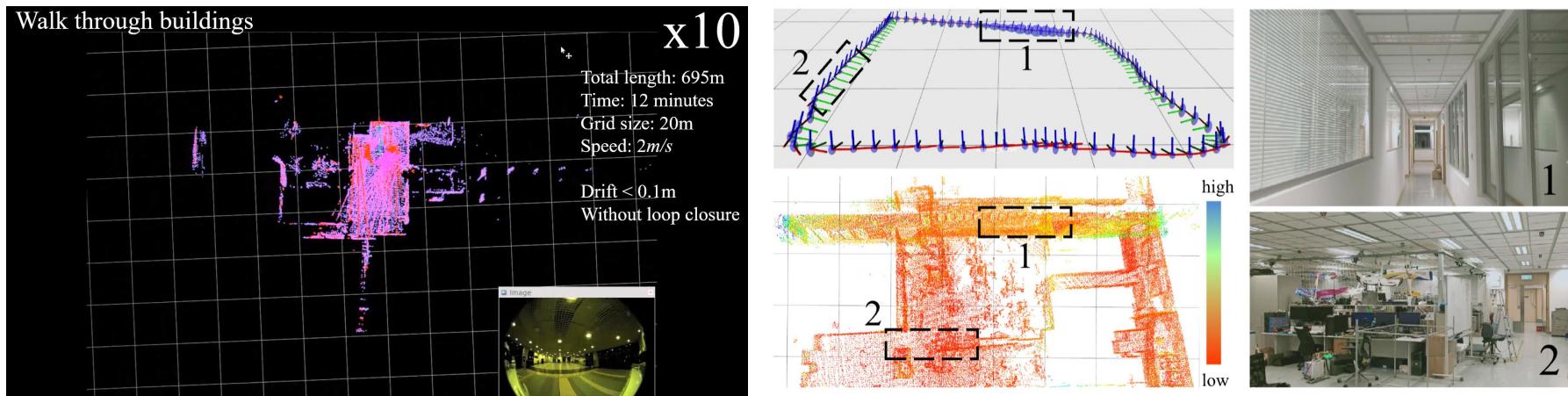
Iterative Closest Point [Arun1987PAMI]



M-LOAM: Multi-LiDAR SLAM with uncertainty-ware mapping [Jiao2021TRO]

- Extrinsics as one of estimated states
- Propagate errors (noise, extrinsic error, degeneracy) into map

Classic LiDAR SLAM (2018-2021)



M-LOAM: Multi-LiDAR SLAM with uncertainty-ware mapping [Jiao2021TRO]

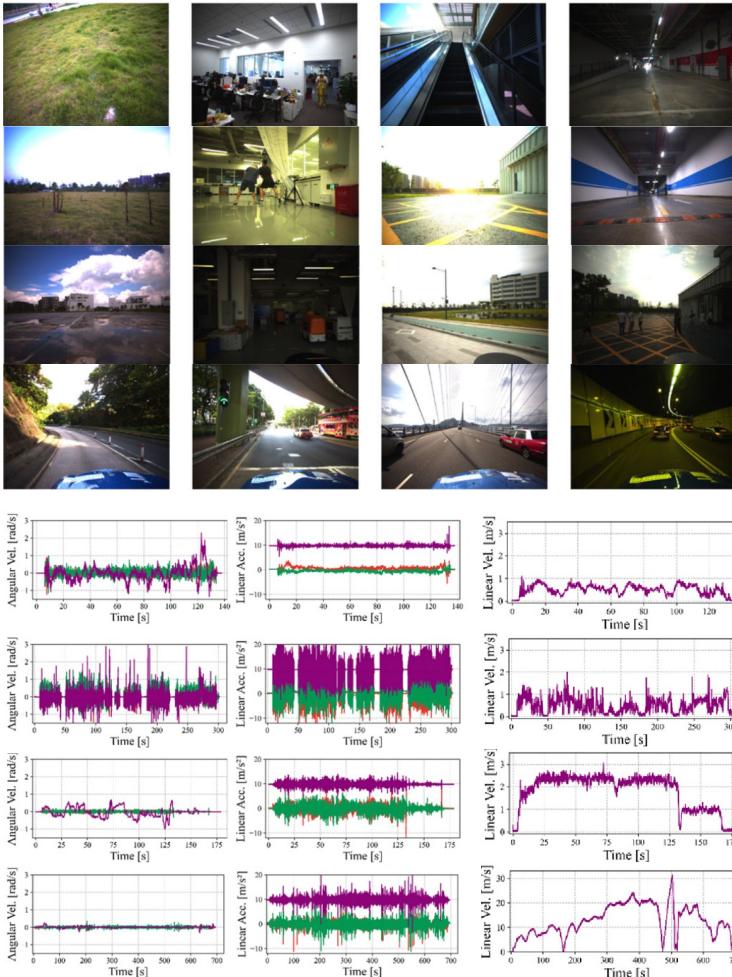
- Extrinsics as one of estimated states
- Propagate errors (noise, extrinsic error, degeneracy) into map

Challenging SLAM Datasets (2021-2023)

FusionPortable Dataset for SLAM Evaluation [Jiao2022IROS] [Wei2025IJRR]

- **Open questions:** is it possible to use one SLAM for all platforms and all environments?
- Data: **42km trajectories** on **4 platforms**, covering **10 challenging scenarios**
- Motion patterns for different types of robots vary significantly

Challenging SLAM Datasets (2021-2023)



FusionPortable Research Dashboard Home Calibration Localization & Mapping Perception Datasets Search Previous Next

FusionPortable V2
From Campus to Highway: A Unified Multi-Sensor Dataset for Generalized SLAM Across Diverse Platforms and Scalable Environments

News

- (2025-09-28) The list of [Related Works](#) that have utilized the FusionPortable dataset has been updated.
- (2025-04-10) Some rosbags are extracted as individual files and converted into the KITTI format. Click [here](#) to try.
- (2024-06-29) The tutorial of sensor calibration (intrinsic and extrinsic) is provided. Click [here](#) to try.
- (2024-05-08) Groundtruth poses of all vehicle-related sequences are postprocessed: eliminate poses characterized by high uncertainty.
- (2024-04-22) Data can be downloaded from [Baidu Wang Pan](#) with the code [bjy8](#).
- (2024-04-14) All sequences, ground-truth trajectories, and ground-truth maps have been publicly released. If you find issues of GT trajectories and maps, please contact us or report [here](#).
- (2024-04-13) A small simulated navigation environment is provided.
- (2024-04-08) The development tool has been initially released.
- (2024-04-07) Data can be downloaded from [Google Drive](#).

News

Overview

Usage Steps

1. Read through the overview of the FusionPortableV2 dataset: *sensors, coordinate frames, and definitions of ROS topics and message*.
2. Download data from [this link](#).
3. Check examples of using the dataset from [this link](#).

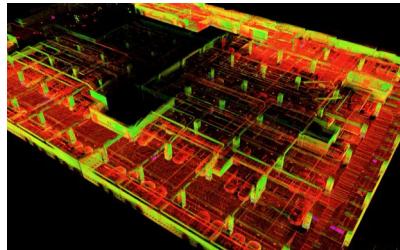
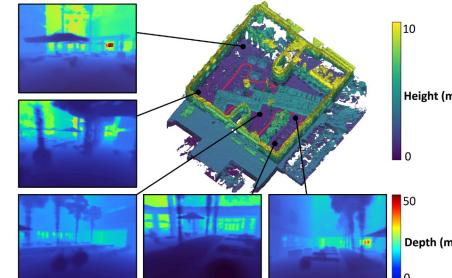
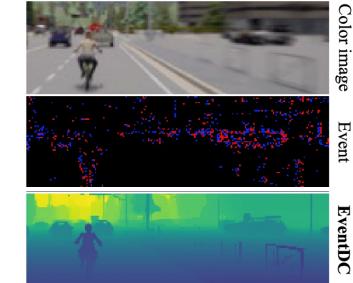
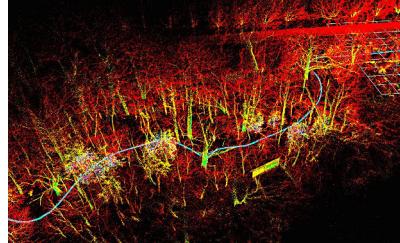
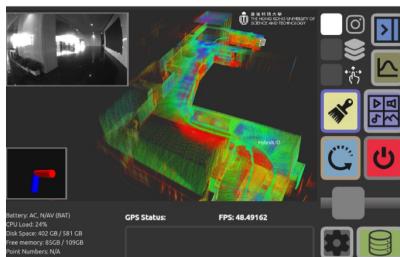
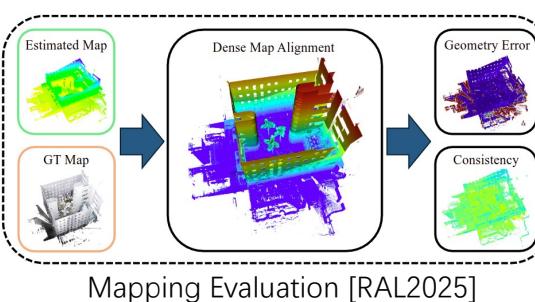
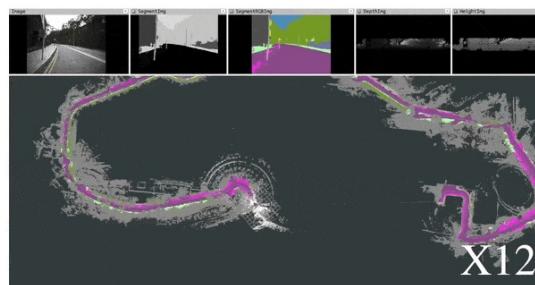
Sensors

- Handheld Sensor:**
 - 128-beam Ouster LiDAR (OS1, 120m range);
 - Stereo FLIR BFS-U3-315AC cameras;
 - Stereo DAVIS346 cameras;
 - STM300 IMU;
 - 3DM-G07-GNSS/INS
- UGV Sensor:** Omron E6B2-CWZ6C wheel encoder
- Legged Robot Sensor:** Built-in joint encoders, contact sensors, and IMU of the Unitree A1

Sensor	Characteristics	ROS Topic	ROS Message Type	Rate (Hz)
3D LiDAR	Ouster OS1, 128°-view > 360°horiz. FOV IMU: IMU20408, 6-axis MEMS Range, near-infrared, reflectivity, signal images	/os1.cloud_node/points /os1.cloud_node/imu /os1.image/node/({range, nearir, ...}).image	sensor.msgPcmCloud2 sensor.msgImu sensor.msgImage	10 100 10
Frame Camera	Stereo FLIR BFS-U3-315AC, global shutter 66.5°-view, 70°-FOV	/stereo/frame/({left, right})/image/raw	sensor.msgCompressedImage	20
Event Camera	Stereo DAVIS346, 67°-vert., > 83°horiz. FOV 346 x 240 resolution Images that capture color data	/stereo/davis/({left, right})/events /stereo/davis/({left, right})/image/raw	dvs.msgsEventArray sensor.msgCompressedImage	30 20
IMU	STM300, 6-axis MEMS	/stms300/imu	sensor.msgImu	1000
INS	3DM-G07-GNSS/INS Dual-antenna, RTK-enabled INS	/3dm/ins/nav/odom /3dm/ins/gps/({left, right})/fix /3dm/ins/imu	nav.msgXVelocity sensor.msgNavStatFix sensor.msgImu	10 10 200
Wheel Encoder	Omron E6B2-CWZ6C, 1000P/R	/minihercules/encoder	sensor.msgJointState	100
Legged Sensors	Building joint encoders and contact sensors Built-in IMU Out-of-the-body kinematic-inertial odometry	/unitree/joint/state /unitree/imu /unitree/body/odom	sensor.msgJointState sensor.msgImu nav.msgImu	50 50 50

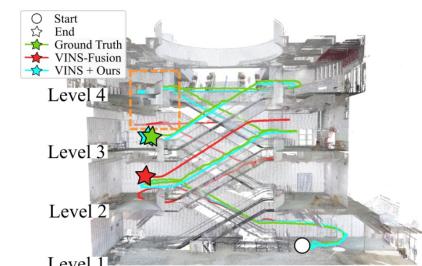
QR Code

Impact of the FusionPortable Dataset



Metric-Semantic Mapping [TASE2024]

LCE-Calib [T-MECH2022]



Verification of Loop Closure
[Under Review]

SLAM-Enabled Products and Systems

Drones

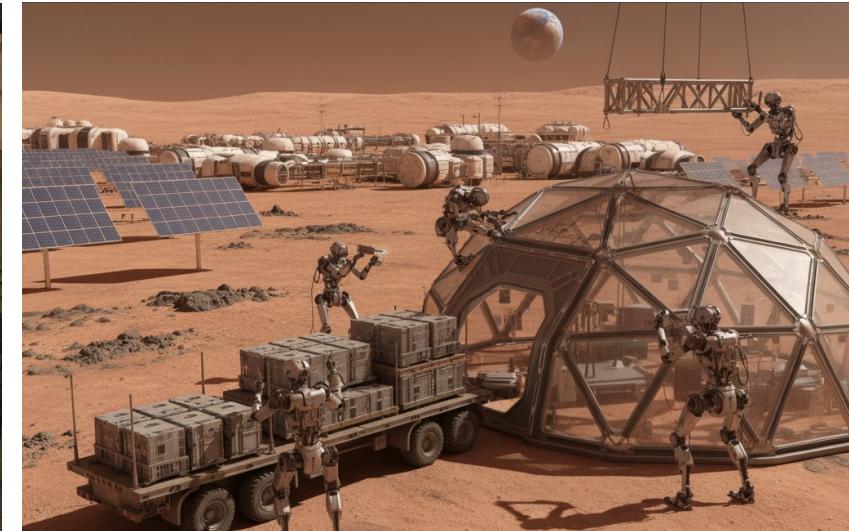
AR Glasses

Sweeping Robots

- **Mature Geometric Perception:** Localization and sparse/semi-dense serve as foundational technologies for many real-world products.
- **But Autonomy Gap:** systems remain fragile and lack context as well as interaction, requiring human intervention for long-term operation or recovery.

Next-Gen SLAM: Spatial Memory for Embodied Navigation

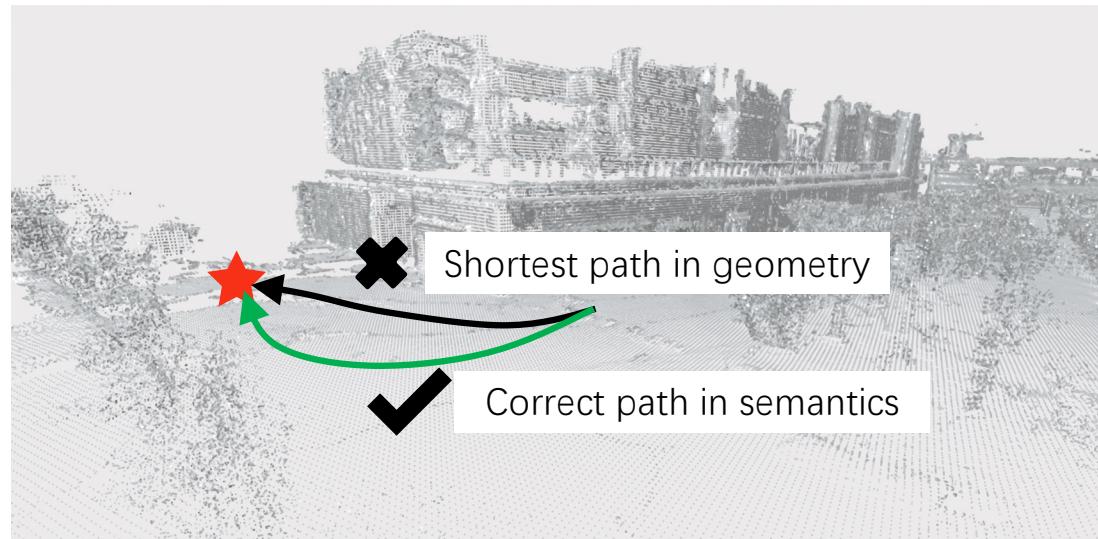
Semantic Understanding



Task Versatility and Learning

Lifelong Autonomy

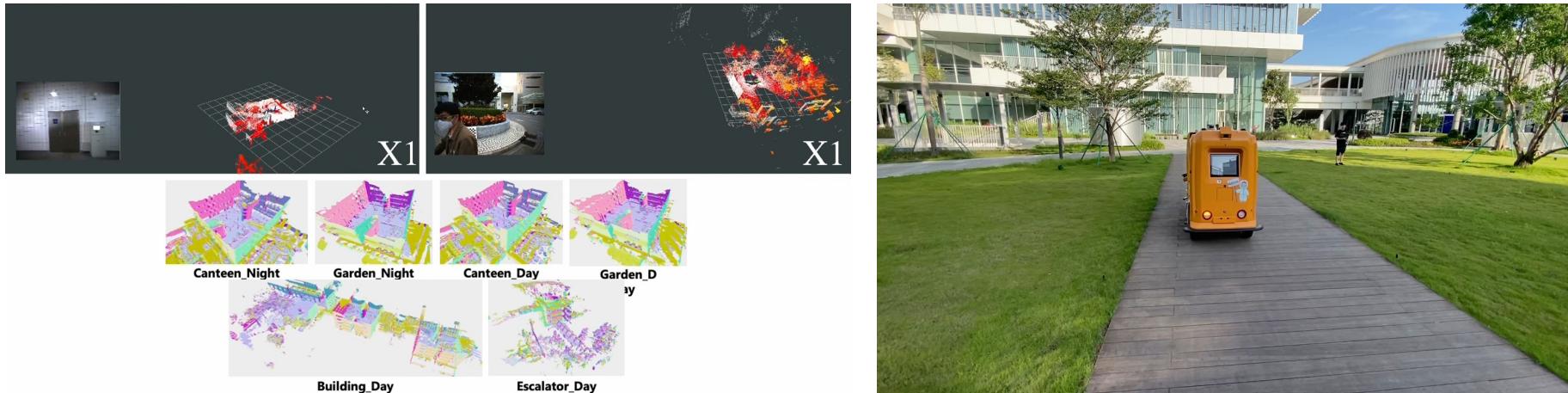
Metric-Semantic Mapping



Real-time metric-semantic mapping [Jiao2024TASE]

- GPU-accelerated volumetric mapping
- Bayesian update for noisy semantic labels
- Enhance the safety of robot navigation in unstructured environments

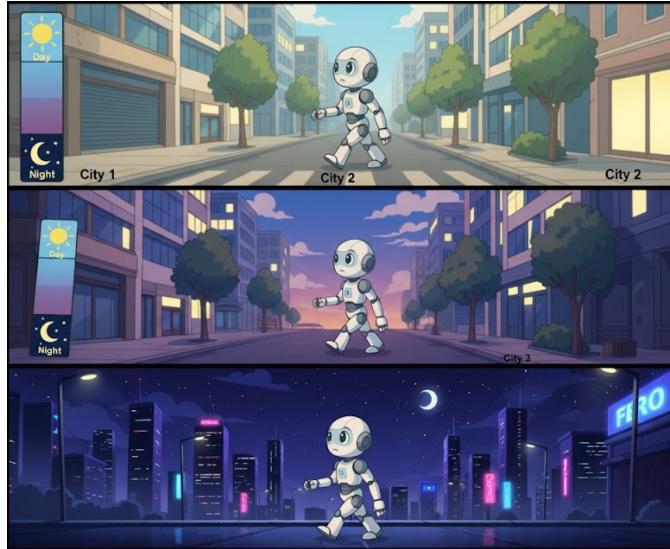
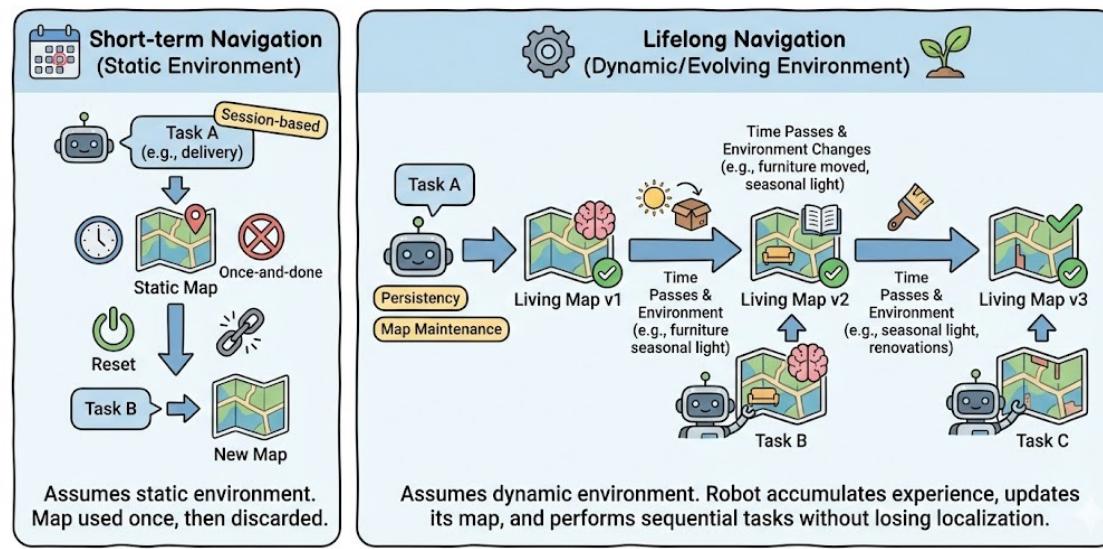
Metric-Semantic Mapping



Real-time metric-semantic mapping [Jiao2024TASE]

- GPU-accelerated volumetric mapping
- Bayesian update for noisy semantic labels
- Enhance the safety of robot navigation in unstructured environments

New Focus: Lifelong Navigation



What lifelong navigation focuses:

- **Working** in highly dynamic real-world scenarios
- **Problems:** long-term localization, semantic understanding, dynamic mapping, etc.
- **Beyond accuracy evaluation:** success rate, memory growth rate, etc.

Coincidence vs. Inevitability: Map as a type of Memory

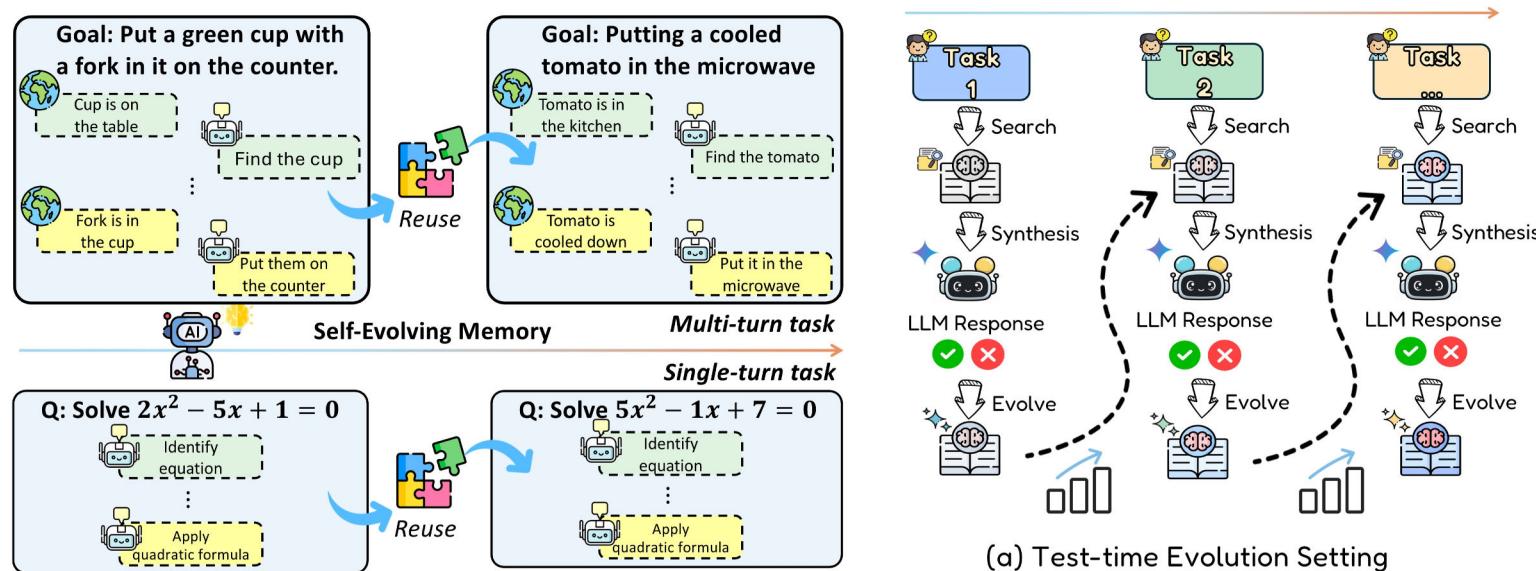
Google DeepMind

2025-11-27

Evo-Memory: Benchmarking LLM Agent Test-time Learning with Self-Evolving Memory

Tianxin Wei^{†,1}, Noveen Sachdeva², Benjamin Coleman², Zhankui He², Yuanchen Bei¹, Xuying Ning¹, Mengting Ai¹, Yunzhe Li^{†,1}, Jingrui He¹, Ed H. Chi², Chi Wang², Shuo Chen², Fernando Pereira², Wang-Cheng Kang² and Derek Zhiyuan Cheng²

[†]Work done while at Google DeepMind, ¹University of Illinois Urbana-Champaign, ²Google DeepMind



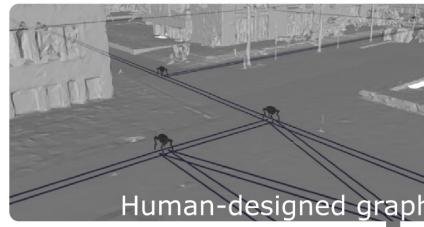
Existing Solutions: Dense Mapping and Graph Extraction

i. Scan the environment

ii. Process point cloud

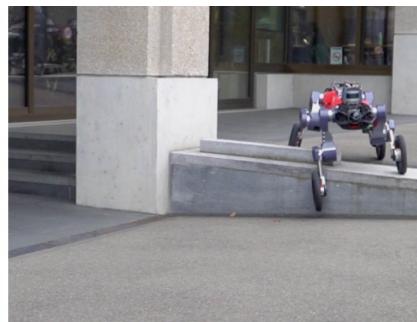
Collection time: ~ 90 min.

iii. Create navigation graph



Human-designed graph

iv. Path planning & Follow



[Lee2024Science Robotics]

- ✓ Accurate results
- ✓ Well-defined pipeline

- ✗ Carefully data capture
- ✗ High storage overload
- ✗ Time-consuming reconstruction

Existing Solutions: Teach and Repeat

[Qiao2025ICRA]

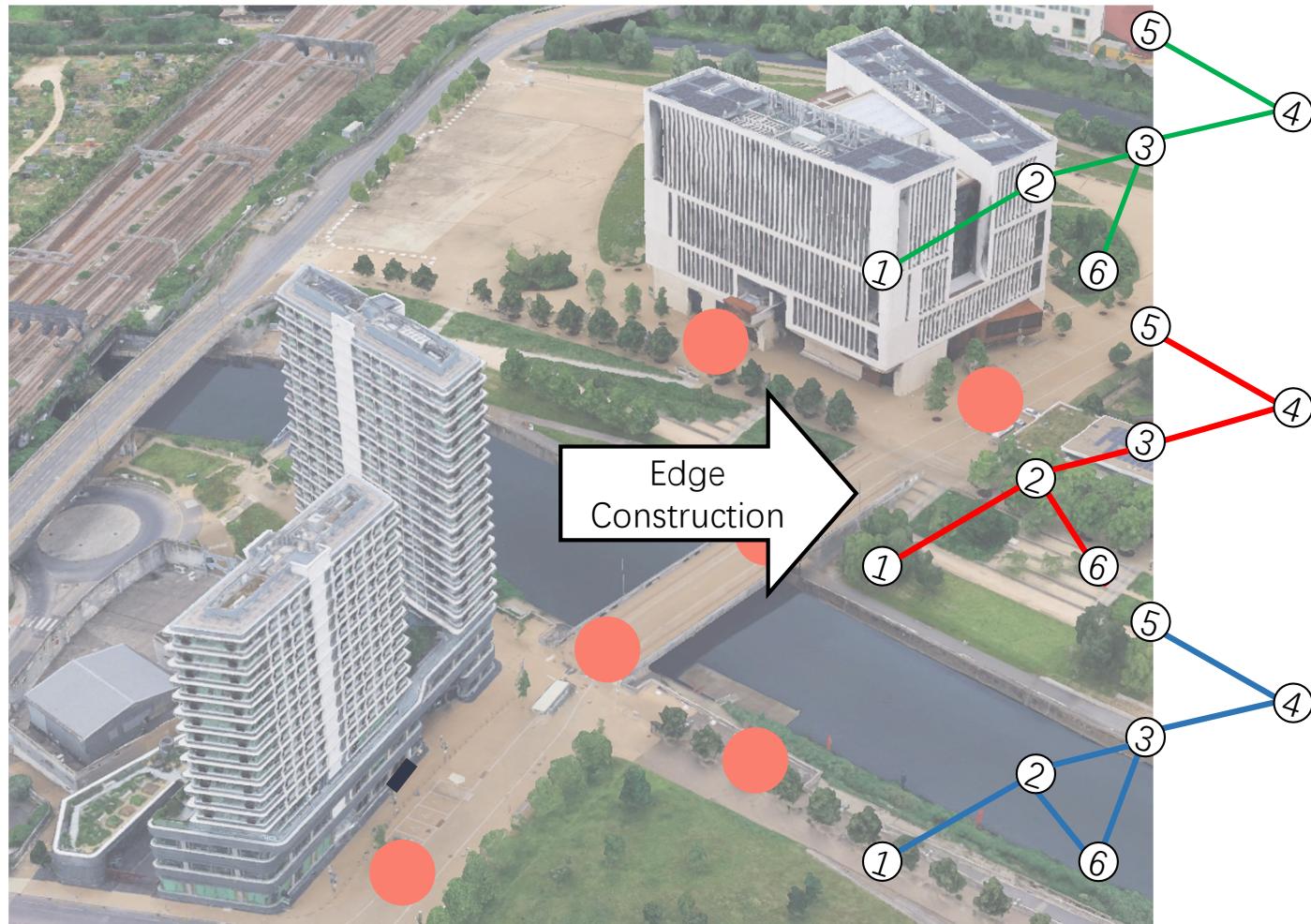
- **Teach:** user drives a robot which stores sparse visual information in a relative pose graph
- **Repeat:** robot localizes by matching live visual data to map and steers to stay on path

✓ Well-defined pipeline
✓ Relaxing global consistency

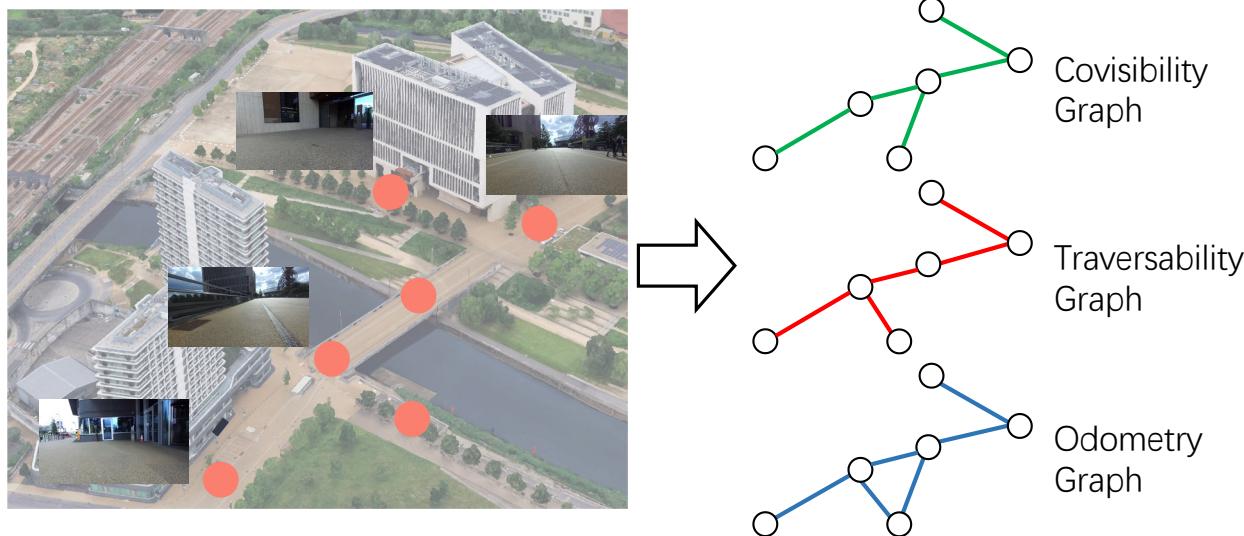
✗ Limited to the teach path
✗ Time-consuming data collection

Our Solution: Sparse Map Representation

Our Solution: Sparse Map Representation



Our Solution: Sparse Map Representation



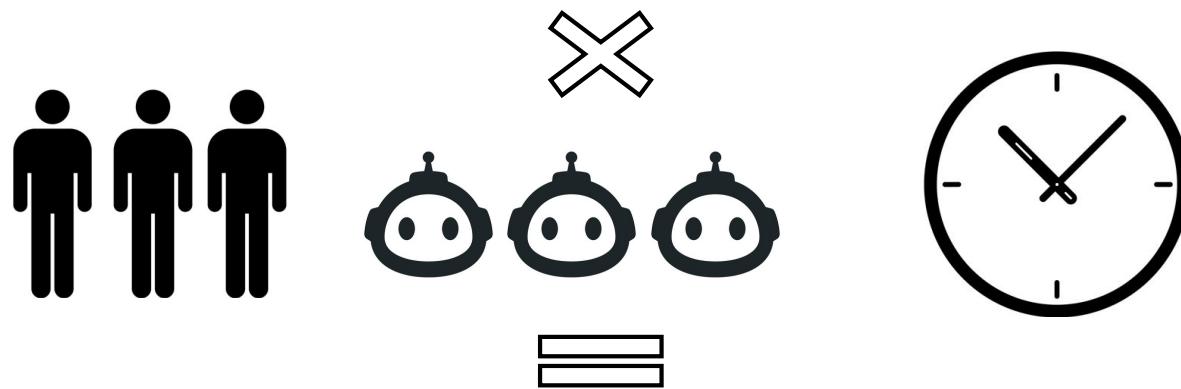
- **Map** is represented as a three-layer topometric map.
- **Submap** is constructed by individual mobile devices integrated with odometry.
- **Collaborative localization** with 3D geometric foundation model

How to Extend the Mapping Scale?

Our Solution: Crowdsourcing Mapping

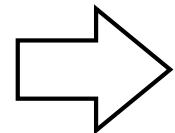
Relax

Our Solution: Crowdsourcing Mapping

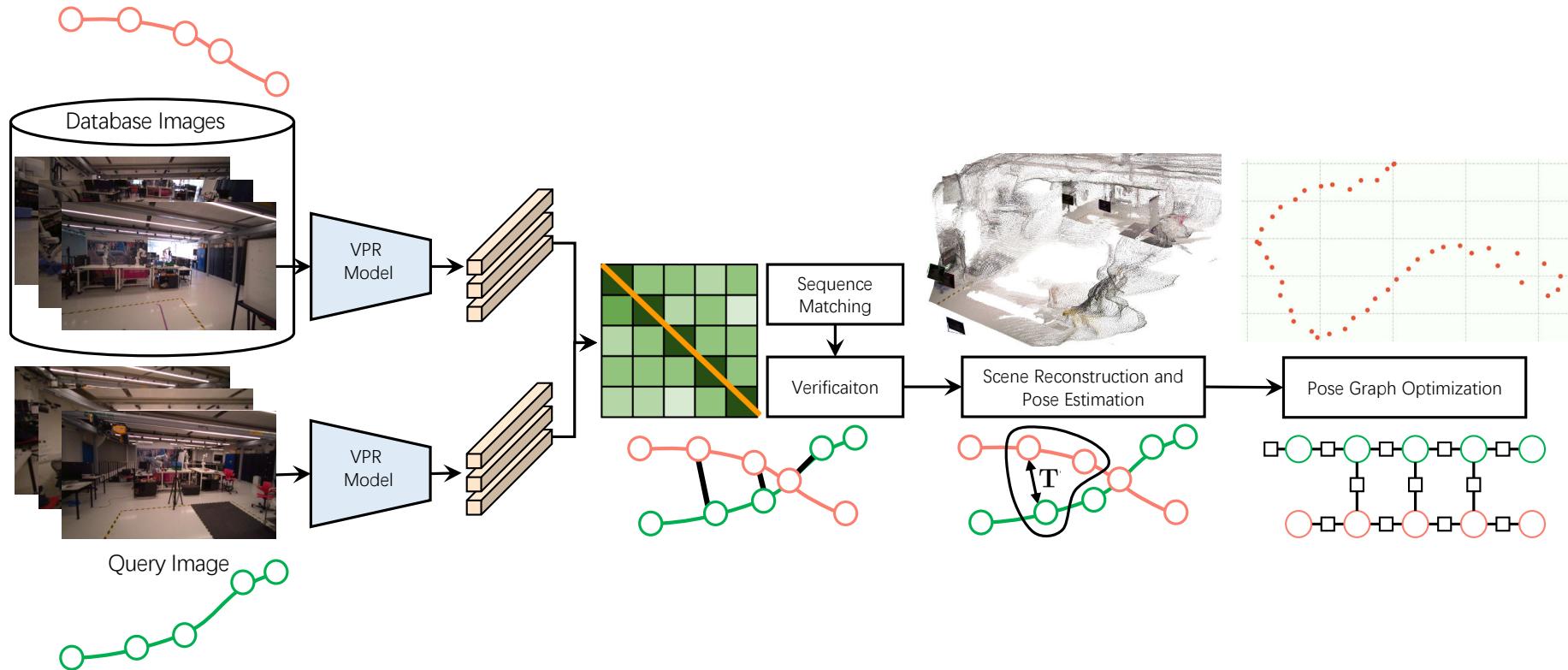


Large amount of **Fresh** mapping data from **Public Users**

Our Solution: Crowdsourcing Mapping

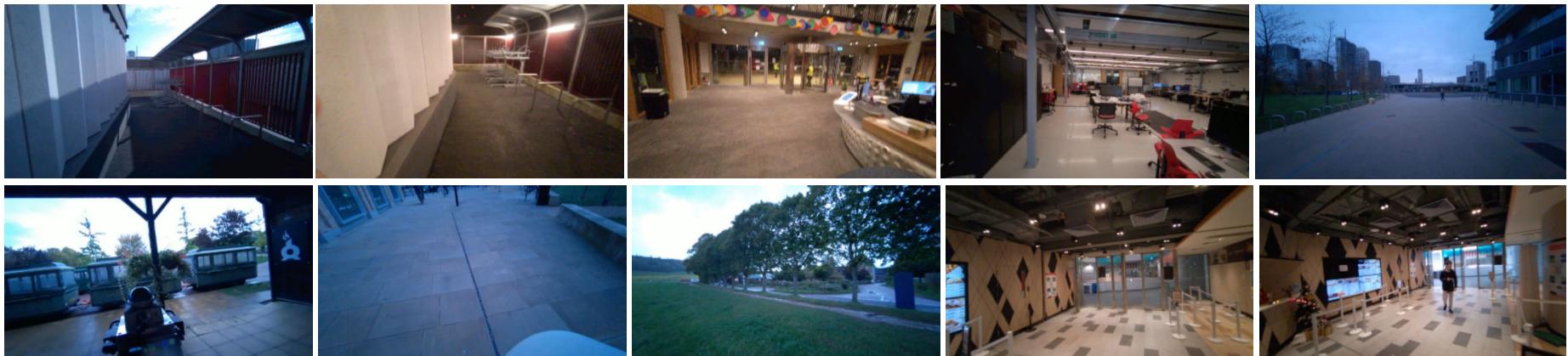


OpenNavMap System: Open Navigation Map



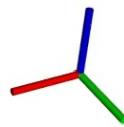
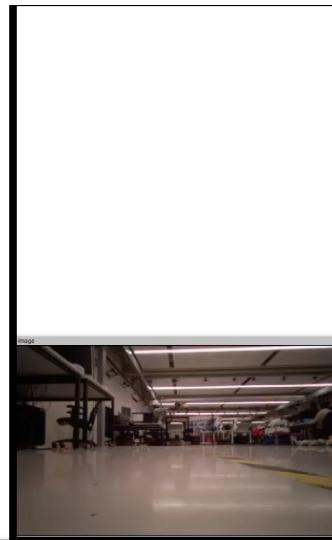
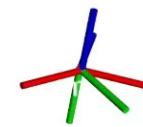
Collaborative localization Pipeline by Gathering Multi-Source Submaps
IROS2025 OWN Workshop Best Paper

Experiments

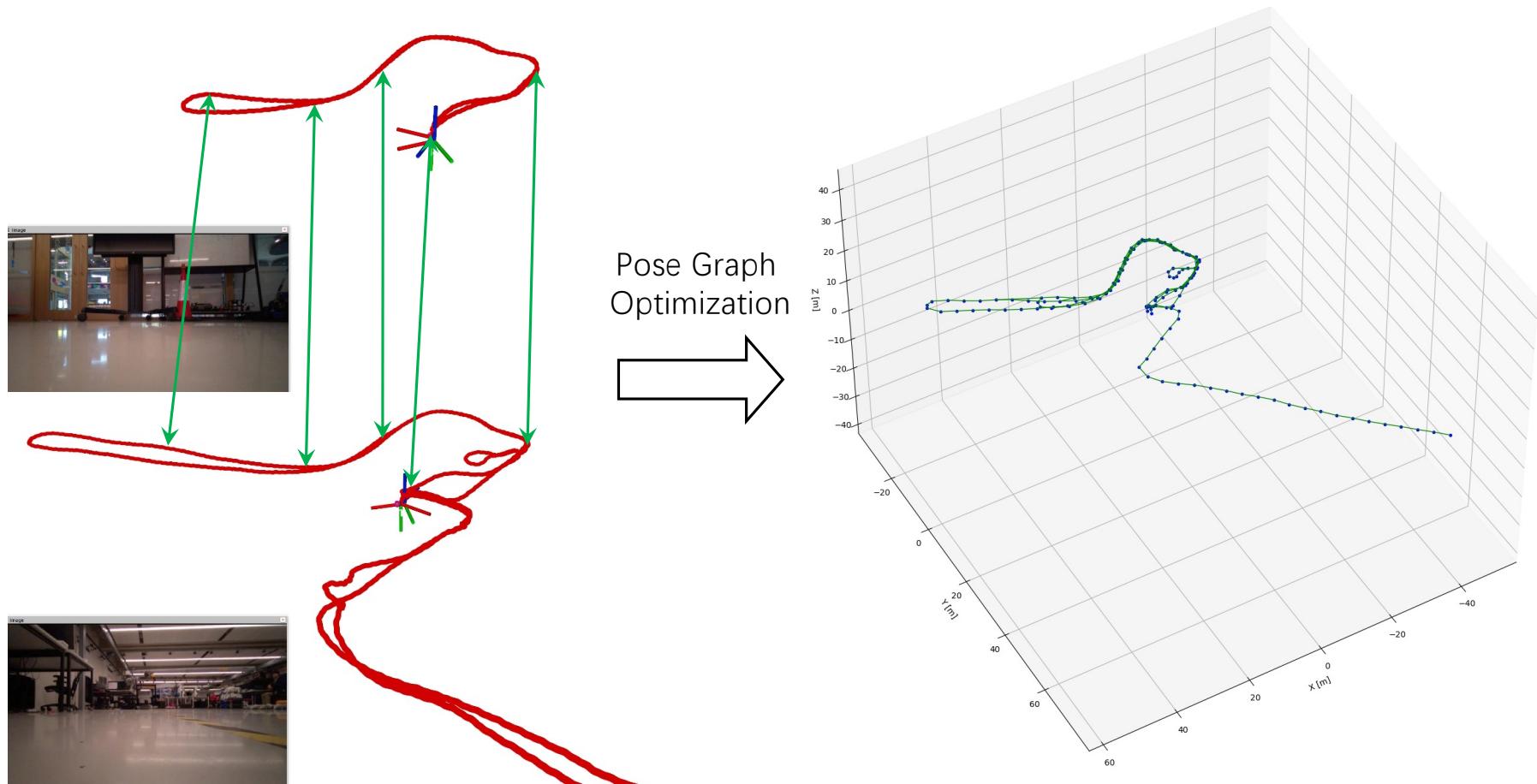


Dataset evaluation: 9 months, 37 sequences, 19km trajectories

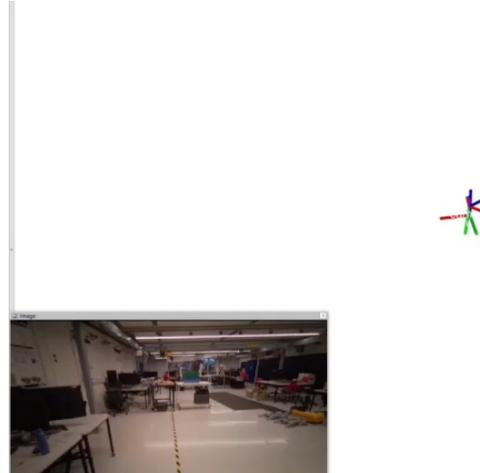
Submap Construction



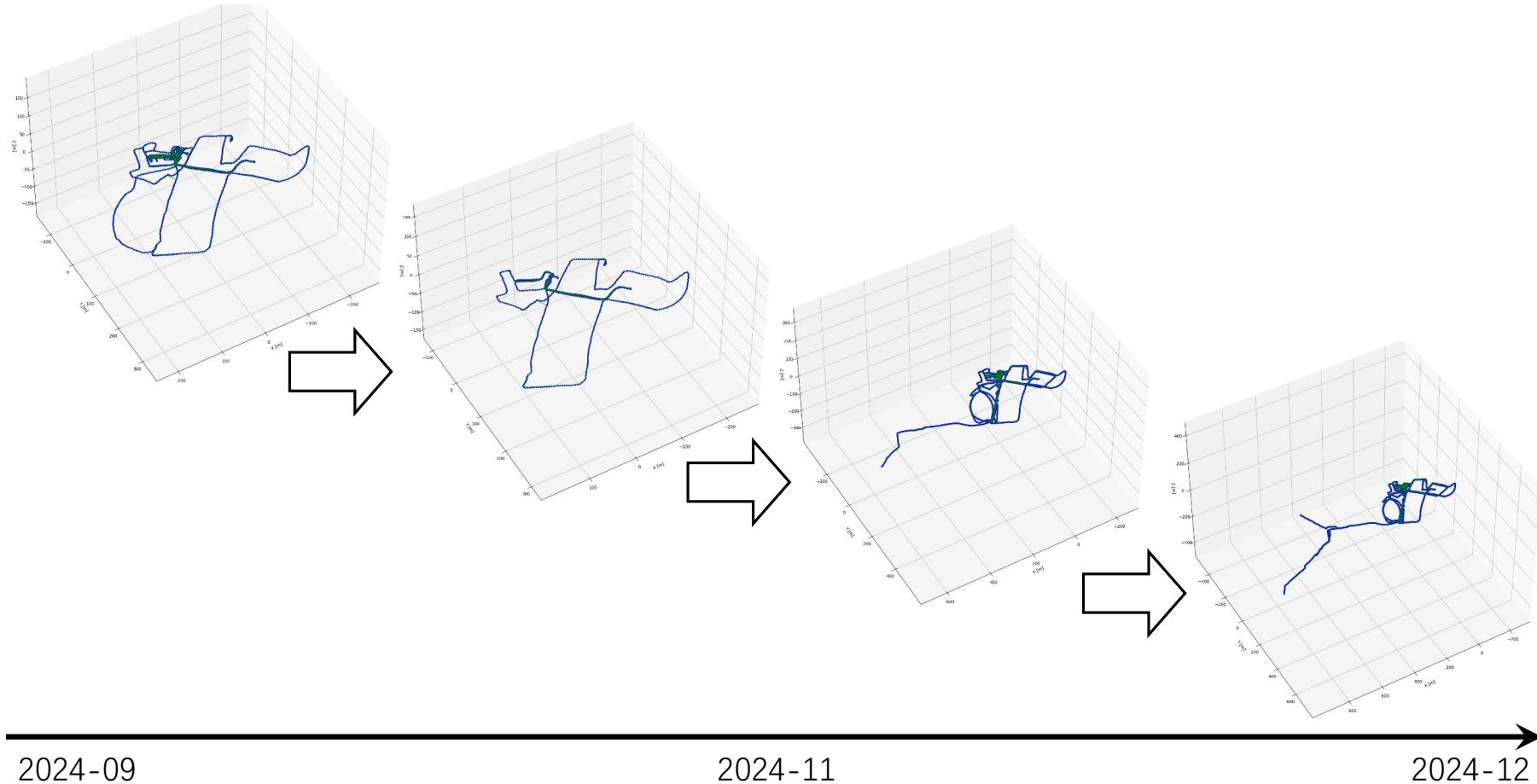
Collaborative Localization and Map Merging



Map Merging with More Submaps



Map Merging with More Submaps

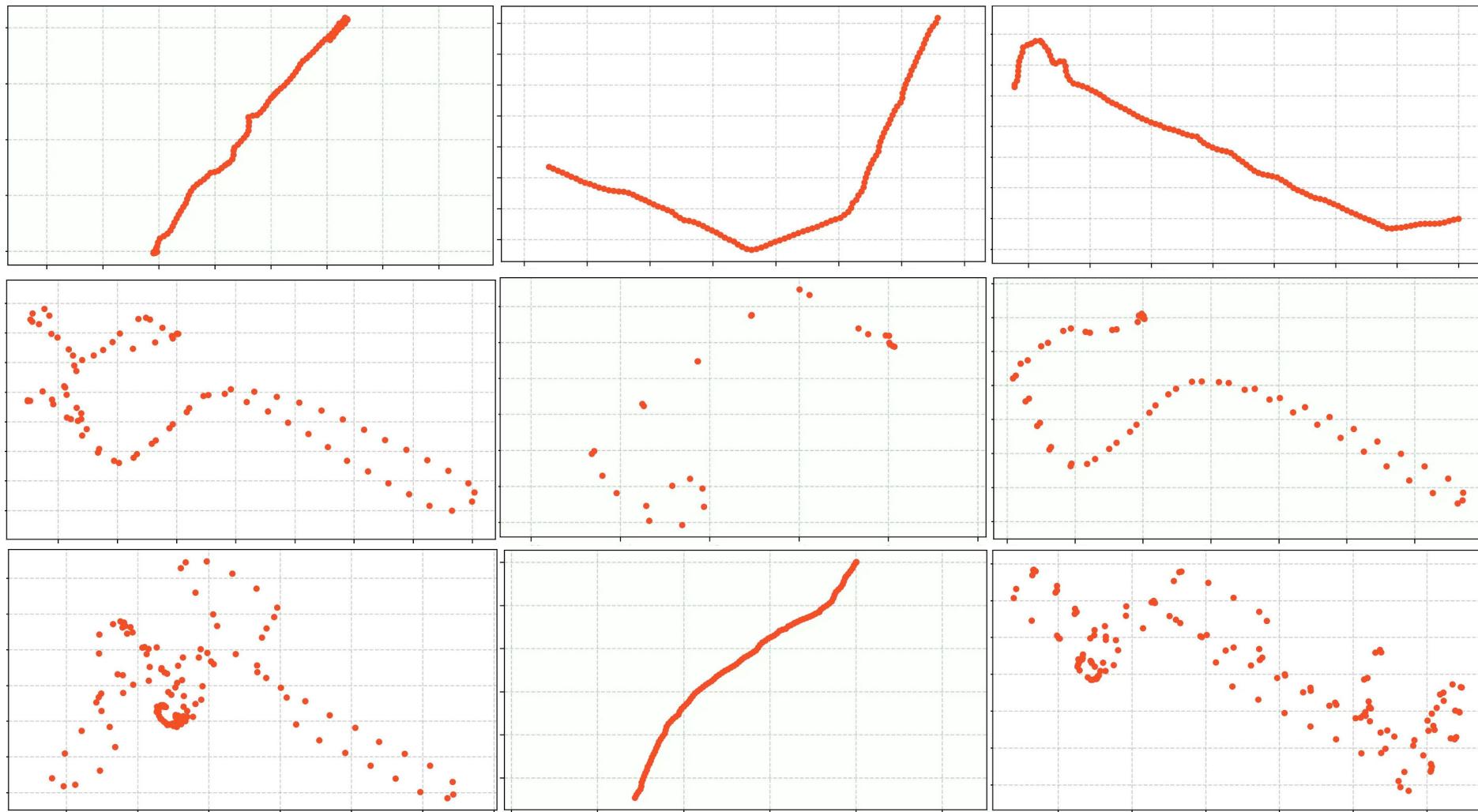


2024-09

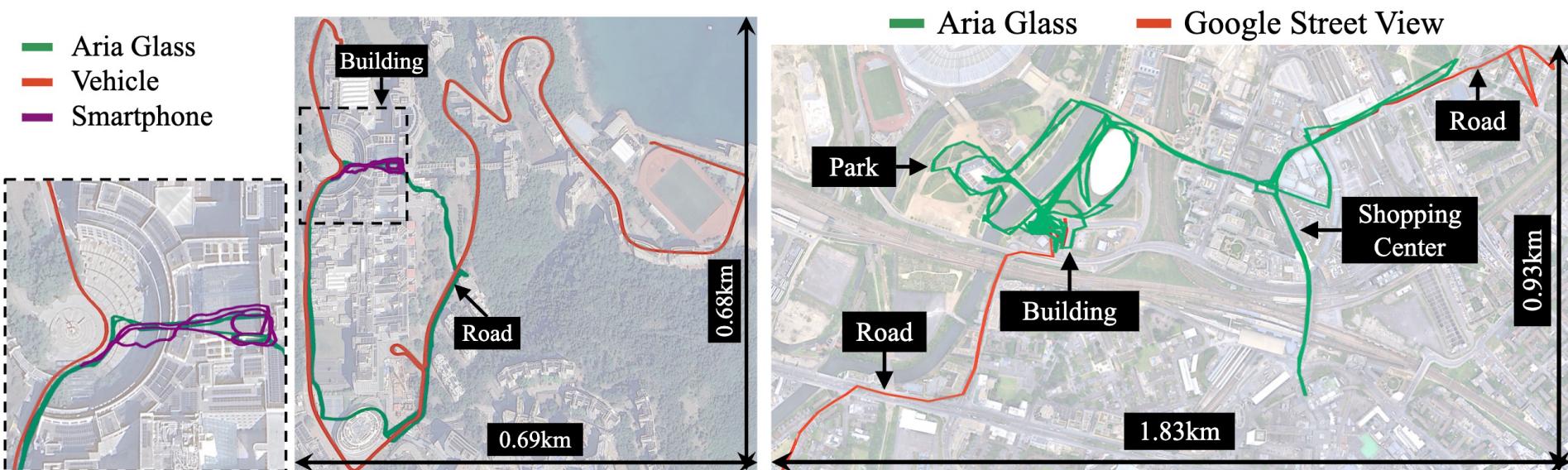
2024-11

2024-12

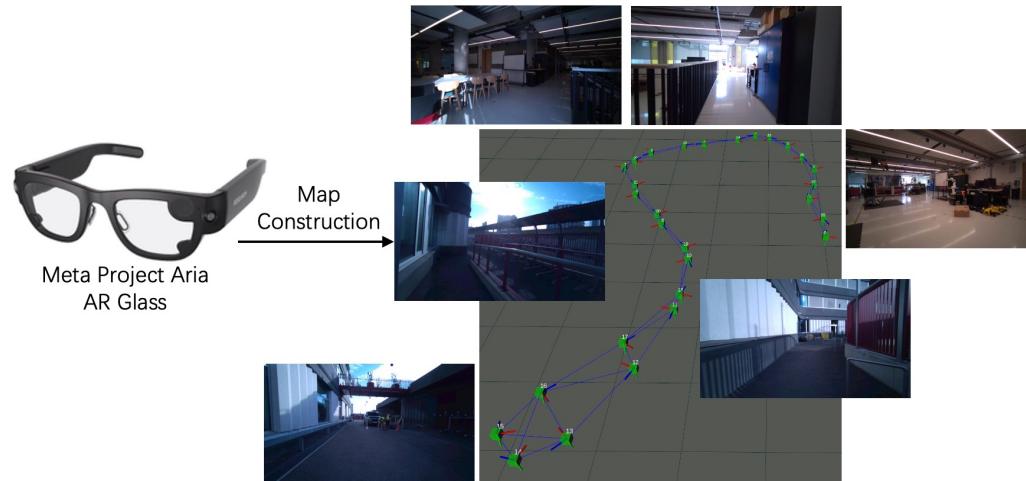
Map Merging with Shuffle Submap Orders



Final Map Construction



LiteVloc: Enable Visual Navigation with the OpenNavMap



Map-Lite Visual Localization for Image Goal Navigation [Jiao2025ICRA]

- **Map:** sparse and discrete map eliminates the dense, metrically-precise map construction.
- **Hierarchical Vloc:** first retrieve place, then estimate the relative pose.

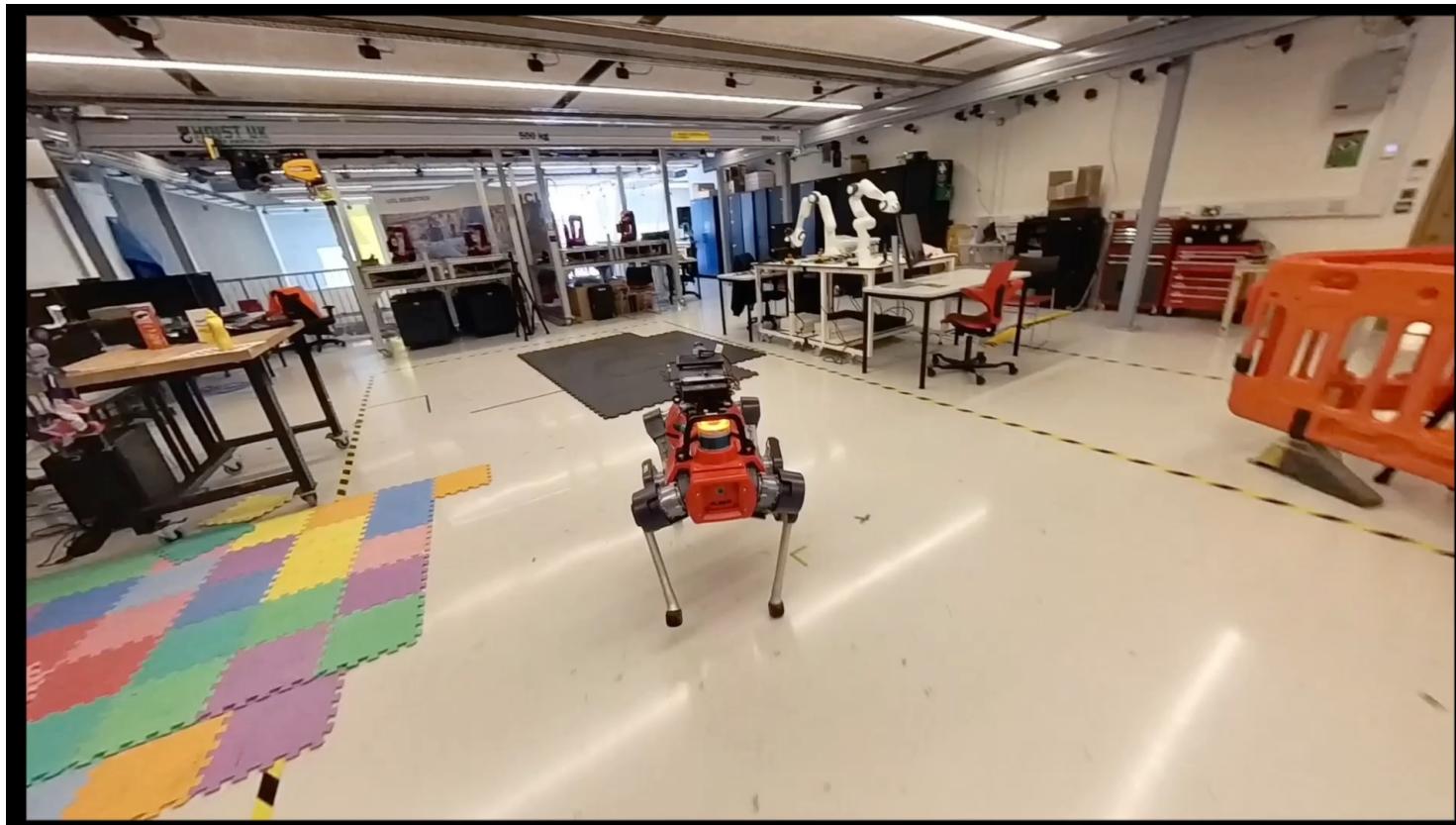
LiteVloc: Enable Visual Navigation with the OpenNavMap

Introduction

Goal image

Imagine the robot is navigating its usual route

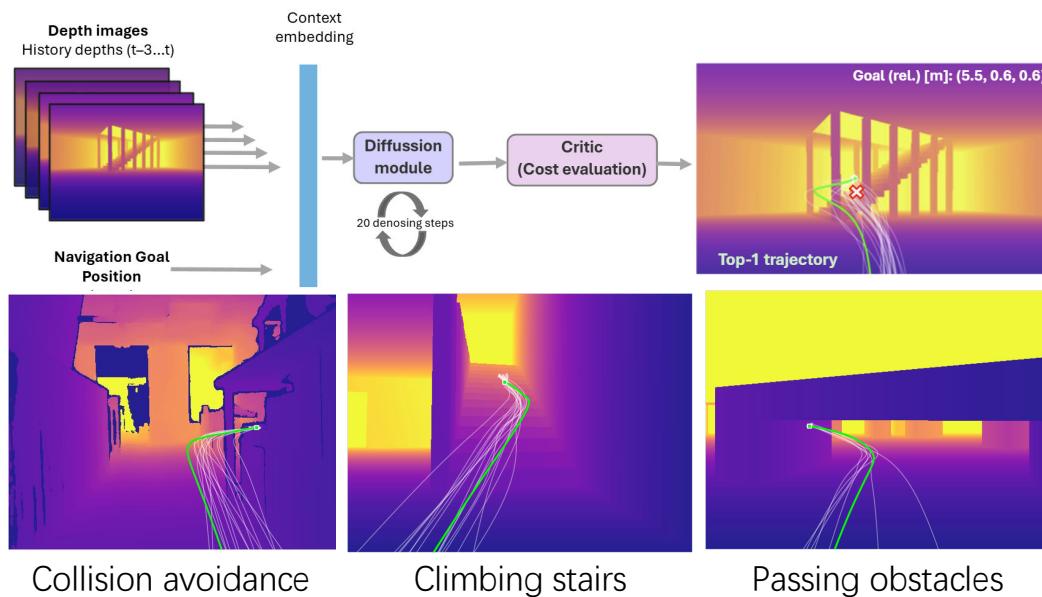
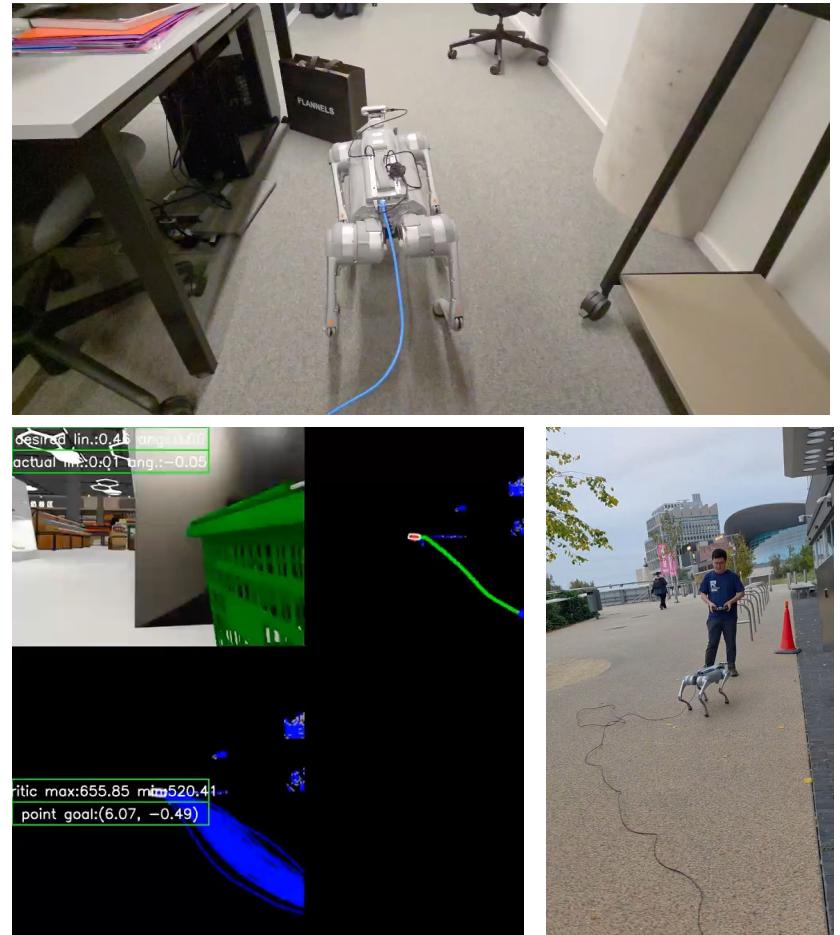
Demonstration of Image-Goal Navigation



Zero-shot deployment

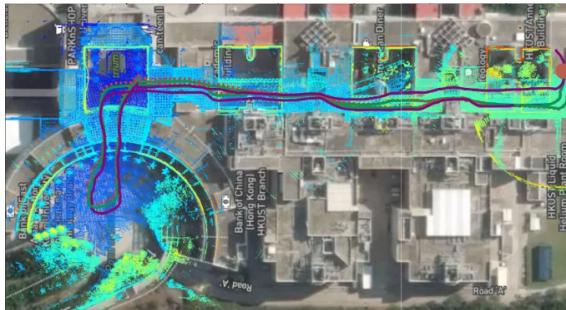
SanD-Planner: Visual Path Planning

- **Map-less** and **diffusion-based** local path planning for multi-layer scenarios
- The structural inductive bias provided by **B-splines** drastically improves sample efficiency.

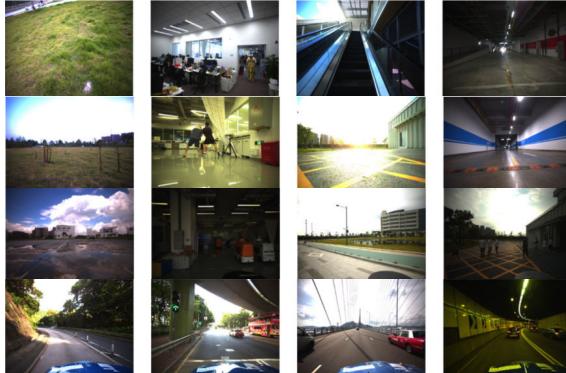


Next-Gen SLAM: Spatial Memory for Embodied AI

Geometric Representation

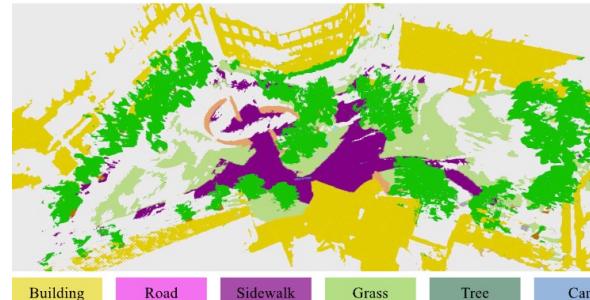


M-LOAM: multi-LiDAR SLAM

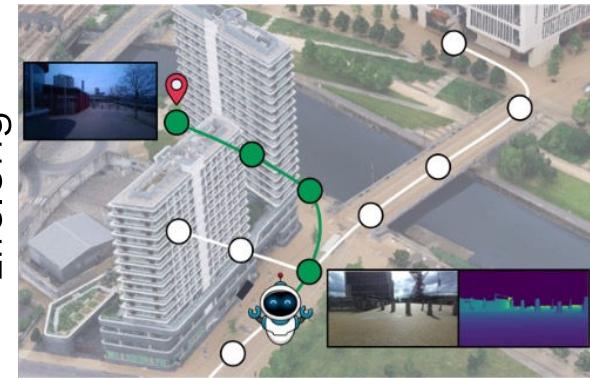


FusionPortable Dataset

Lifelong



Metric-Semantic Mapping



OpenNavMap and LiteVLoc

Lifelong Field Autonomy

Goal

Q&A