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Abstract— With the rise in smart device manufacturing, the
presence of any type of defect on the glass screen has a great
impact on the quality of smart devices. This paper presents
a robust approach for intelligent micro-scaled localization and
classification of defects using semi-supervised learning on 16K
pixel image of mobile phone glasses. Our approach features
an efficient recognition and labeling of three types of defects:
scratches, light leakage, and pits. Our method also differentiates
between the defects and light reflections due to dirt particles
and sensors regions, classified as background. We use a par-
tially labeled dataset to achieve high robustness and excellent
classification of defects and background as compared to PCA,
multi-resolution and information fusion based algorithms. In
addition, we incorporated two classifiers at different stages
of our inspection framework for labeling and refining the
unlabeled defects. We successfully enhanced the inspection
depth-limit up to 5 microns. The experimental results show
that our method outperformed human inspection in testing the
quality of glass screen samples by identifying defects in samples
that have been marked as good by human inspection.

I. INTRODUCTION

In the era of robotics and automation, AI is helping
to solve many difficult problems, where humans are
unable to reach that level. Glass inspection is one of
the key challenging problem for the glass manufacturing
industry. Due to industrial competition, manufacturing
companies are facing financial loses due to inspection
time and the limitation of the workforce. Furthermore,
the presence of defects that human eyes are not able to
see, has great importance in the quality of smart device
glass. Nowadays, companies are showing great interest in
investing in automation systems along with state-of-the-art
techniques, that can help them overcome these problems;
hence boosting the production line and in return sales profits.

A variety of inspection systems have been proposed to
solve the inspection problems for different market niches
of limited types of glass. For defect inspection of satin
glass and float glass, researchers have used machine learning
techniques [1, 2, 3, 4]. Several frameworks based on image-
processing have been proposed for satin glass [4] and glass
bottles [5]. Furthermore, some optical-based approaches have
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Fig. 1: Smart Phone Glass Inspection System. The left image
shows the front view, and the right image shows the inside
view of the experimental system.

been proposed to detect micro-cracks in glass [6], detect
surface defects in touch panel glass [7], and inspect window
glass [8]. Some contributions have been made related to
rough set theory to defect detection of automotive glass for
vehicles [9].

A huge rise in the production of smart device glass
has been noticed in the last ten years. Many technology
companies who manufacture smart gadgets such as mobile
phones, tablets, laptops, and smartwatches are producing
millions of sets each year. In smart device glass, not
only is large workforce required but also time is another
important key constraint in inspecting the smart device
glass. Due to the limitation of accuracy, human eyes are
only able to detect a defect over 0.1 millimeters. Also,
the average time for inspecting one smartphone glass is
about 1-2 minutes.Therefore, meeting the market demand
and increasing the production rate is becoming challenging
without incorporating robotics, automation and AI in the
production lines to solve inspection problems.

For smartphone glass inspection, the high-level accuracy
and speed are the key-challenging tasks. Currently, the
state-of-the-art works [10] present a mechanism based on
principal components analysis (PCA) for defect inspection
of mobile phone cover glass. This is limited to detecting
the scratch defects only. Using these techniques, it is
complicated to classify the light leakage and specks of dirt
on the smartphone’s glass.

Our proposed scheme SmartInspect uses an experimental
setup for smartphone glass inspection which will be
discussed in detail in section IV. Based on the dataset
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collected using the inspection system, our target is to
precisely localize the defects over full screen glass image
and classify them to different types of defects such as
scratches, pits and light leakage, along with backgrounds
such as sensors areas, light reflections and dirt. The very
large-sized image can have many different combinations of
defects and background. SmartInspect makes possible the
identification of defects, backgrounds, and sensors regions.
Moreover, it also works in the characterization of the type
of defects.

We begin by outlining related work (Sec II) and our
problem description in Sec III. Sec IV presents our proposed
method and framework for smart inspection of mobile phone
screen glass. Sec V demonstrates the experiments and results
obtained by smart-inspect including both quantitative and
qualitative evaluations.

II. RELATED WORK

This section presents a review of recent work related
to the glass inspection techniques and frameworks. In
literature, minimal contributions to this area have been
found specifically related to smart device glass inspection
techniques, although some methods are present that are
related to detecting several glass defects of LCD and general
glass. [11] introduced a fan-beam laser-light-based method
for inspecting the scratches and dust over the LCD panels.
Recognition of bubbles of the glasses has been done [12]. In
this method, the authors proposed a technique called binary
feature histogram (BFH), which helps in the characterization
and classification of glass defects. In this work they used
the AdaBoost algorithm.

An online distributed float glass inspection scheme is
introduced in [2], which uses the OTSU method along with
image filtration using gradient direction. They also used
the adaptive surface for estimating the downward threshold.
This system can quickly detect the bubbles, light reflection
and lards. [13] shows a two-phase method for an LED glass
defect inspection framework using machine learning, which
involves both training and testing process. Research work
based on wavelet analysis and fuzzy k-nearest neighbor
is presented in [14] for inspection of general glass. This
approach can help in identifying defects such as bubbles,
inclusions, distortion, tin drop and cracks.

Furthermore, Di Li [10] proposed a method for surface
defects inspection of smartphone cover glass. The authors
applied a PCA algorithm to work on smartphone cover
glass, whereas all the previous works have concentrated on
LCD or general glass. This principal-components-analysis
based method can help in identifying typical defects such
as scratches, cracks, edges, angle cutting, and deformation.
The manufacturing process of mobile phone glass is very
much different than for general glass, and the quality needs
further improvement in diagnosing the defects, if any. Their
proposed system not only detects the defects but also able to

recognize them to some extent. After taking inspiration from
PCA in facial recognition, [10] used it in their framework
to classify the defects. Meanwhile, each image is taken as
a defect face and sets up a training set for defects features
estimation and classification using PCA.

There are some semi-supervised methods such as Pseudo-
Label [15], learning using deep generative models [16] and
with ladder networks [17], and learning by association [18],
but these approaches require labeled dataset for robustness
evaluation.

A smartphone glass sample has many defects along
with sensors regions which includes holes for the camera,
speaker, and buttons. The methods discussed above are not
able to process a full glass image because they are unable to
distinguish between the background region and the original
defects. Furthermore, labeling of 16K glass images dataset
for up to 5 microns defects is also another challenging
aspect which cannot be handled by previously discussed
approaches.

III. PROBLEM DESCRIPTION

Defects inspection and classification is the fundamental
challenging problem. The methods discussed in II shows
good results if the target is only to detect them. However,
their outcomes may have wrong labeling. For instance, in
the case of dirt particles, these techniques are unable to
distinguish them from scratches and dirt. Although dirt is
not a defect. A more critical challenging problem is the
identification of the background sample because the glass
samples might have written text and QR Codes. Another
difficult task is to detect defects that are very small in
dimensions.

As will be illustrated by our experiments, SmartInspect
can help in the estimation of small-sized defects, which a
human eye is unable to capture. Furthermore, our algorithm
outperforms state-of-the-art in differentiating the background
from the defects. Our contributions are as follows;

• SmartInspect can work on raw images (without any
enhancement) and full smartphone glass images (with-
out cropping). This makes it much more powerful
and efficient than the current state-of-the-art techniques
[10, 14], which can perform only after taking the trans-
parent glass regions by cropping the sides of glass.

• Our method outperforms in precise localization and
accurate classification of tiny defects ( 5 microns meter)
that human eyes cannot see.

• We proposed a robust method where the system can
perform excellently based on the partially labeled small
dataset.

• SmartInspect can label large datasets of smart phone
glasses with high accuracy.
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IV. FORMULATION AND METHODOLOGY

A. Proposed Approach

SmartInspect is generated by four-stage processing. In
stage I, all suspicious white continuous regions on each
image are cropped along their bounding boxes, which are
detected by the contours finding algorithm 1. In stage
II, a pre-trained convolutional neural network (CNN) is
used to extract the features of those crops. In stage III,
based on the characteristic of our dataset, we only have
few labeled defects and sensors regions. Background and
defects classifier (BD) is a binary classifier that divides
defects into two classes: defects and background. It also
controls the feedback iterations from defects to the K-means
clusters. We use K-means several times and drop those
clusters excluding or containing a relatively low proportion
of labeled defects in each loop until the number of dropped
crops is less than the preset threshold. This stage cuts the
redundant background crops and greatly reduces the number
of defects. In the final stage IV, a Random Forest based
five-class defects classifier (DC), is trained by the labeled
defects. The four-stage processing works on three sections;

1) Dataset: Our dataset consists of 274 glass images.
All of the 16K pixel images have different combinations of
defects and background regions.

2) Localization of the defects: Firstly a Sobel filtered
with kernel size of 3 is applied to the grey image of
glass. Then this image is converted into a binary image
and dilation is applied on the binary image to enhance
the connectivity of regions. After that, we estimate the
bounding box along with its size and original position
for each continuous white region by non-maximum
suppression. Intersection over Union (IoU) is estimated
between each bounding box with the other bounding
boxes. Moreover, based on the non-maximum suppression
threshold (Tnms), these boxes are merged into one. The
scheme is further explained in algorithm 1. All of the
continuous white regions are padded by zeros to achieve
square regions resulting to a single class object. In the
end, all the square boxes that correspond to a single class
object are resized to 224× 224 pixel batches. For the whole
dataset, we obtained M = 226, 222 crops, as shown in Fig 2.

Fig. 2: Feature Extraction for Transfer Learning

Algorithm 1: Continuous Regions Selection Algo-
rithm

Data: Glass Image I of size [16384× 24576]
captured from the 16K line camera.

Tnms is the non maximum suppresion threshold
Result: R = {r1, ..., rM} continuous regions boxes

of size [224× 224]
initialization;
Is = Sobelfilteration(Ib) using kernal (5, 5);
Ib = Thresholdbinary(Is) at value of 200;
Idilated = Dilation(Ib) using kernal (3, 3);
Find contours C = {c1, ..., cN} of all the white
regions (pixels) Sd = {s1, ..., sN};
R← {};
Tnms = 0.2 ;
while C 6= empty do

i← argmax Sd ;
O ← ci ;
R← R

⋃
O ;

C ← C −O ;
Sd ← Sd − si ;
for cj in C do

if iou(O, cj) ≥Tnms then
C ← C − cj ;
Sd ← Sd − sj ;

while R 6= empty do
[w, h] = size(Ri) ;
if w < h then

Ri ← paddingx=h
zeros(Ri);

else if w > h then
Ri ← paddingy=w

zeros(Ri) ;

Ri(224, 224)← Ri ;
return R

3) Distinguish between the real defects: These include
background, sensors areas, scratches, dirt, pit, crack, finger-
print, QR, and light leakages regions. As our approach is
semi-supervised, we labeled 1070 crops samples manually.
Background, scratch, pit cracks, dirt, sensors, and light
leakage consist of 30, 270, 210, 280, 150 and 130 regions
respectively. Transfer learning is used to process all crops for
the classification. The pre-trained neural network ResNet18
[19] is used as a feature extractor. Each crop is converted to
a 512-dim feature vector after passing through ResNet18.

B. K-means Clustering

In order to distinguish real defects and the background,
we used Random Forest to train BD classifier. Due to
the limited number of labeled data, we can not train a
background-defects classifier directly by using the supervised
approach. Therefore, we design a semi-supervised method
to train this classifier. We use k-means iteratively, for as-
signing data to non-overlapping subgroups (clusters), a type
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Fig. 3: Semi-supervised Learning for Defects and Background Classifications

of unsupervised learning followed by approach known as
Expectation-Maximization. Next, based on the refined labels,
we filter some clusters until this algorithm converges. The
loss function used for k-means clustering is as follows:

J =

m∑
i=1

K∑
k=1

wik

∥∥∥xi − µk∥∥∥2
For each k-means iteration, all data points (the feature

vector of each crop) are divided into 10 clusters (K=10).
Then based on the labelled data, we retain the top six
clusters containing the highest proportion of labeled data
and cast them into the next iteration. Specifically, by using
the feedback, as shown in Fig 3. The iteration continues
until the number of dropped data is less than our preset
threshold. After dropping all background data, we retain real
defects. We train an intra-class classifier DC to classify the
real defects into three different defects: scratches, pits cracks
and light leakages along with two background objects: dirt
and sensors regions.

C. Inspection System Hardware

The experimental setup used in introducing the proposed
framework is shown in Fig. 1. A 16K line camera has been
used to scan the glass image. The human eye can detect
only a defect over 0.1 millimeters. To decrease this limit,
we have used a 16K line camera, which makes our system
capture the defects down to 5 microns.

First, the smartphone glass is placed under the camera
and a lightening system, at a certain height, as shown in
Fig. 1. Then the image is captured. While capturing the
image, the line camera moves from top to the bottom of
glass to get a full scan glass image. The captured image
is shown on the screen. A core i9 processor is used in the
system for handling 16K resolution image. The size of each
image is about 400 MB, which is very large as compared to
simple camera images. To process a huge sized image, the
SmartInspect framework is proposed to localize the defects
precisely, and efficiently classify them separately using the
machine learning technique.

V. EXPERIMENTS AND RESULTS

For the robustness evaluation of the SmartInspect scheme,
we test on glass images with many different defects, as well
as on some positive glass samples.

A. Quantitative Evaluation

Table I shows the quantitative evaluation of our semi-
supervised method for the glass inspection scheme. Where
TP, FN, TN, and FP corresponds to true positive, false
negative, true negative, and false positive, respectively. All
the test images have defects on it, such as scratches (S-type),
pits (P-type) and light leakage (LL-type) along with non-
defect regions of dirt (D-type) and sensors regions (SR-type).
Our system is not placed in a dirt-free environment, and due
to glass edges, light leakage is a compulsory component
on all the samples. Our system outperformed on clean,
scratch, and pit sample. For the samples with dirt, the overall
accuracy significantly decreased to 75% due to the wrong
prediction of dirt regions as pits, scratches or light leakages.

B. Qualitative Evaluation

Fig. 4 shows the performance by inspecting the glass
image full of defected areas. We separated the defects using
the bounding boxes. Regions marked in red are scratches,
green represents light leakage, yellow shows dirt particles.
Sensors regions and light leakages are marked in purple and
cyan respectively. For our dataset, we choose the Random
Forest method, which performaned better than SVM to
generate the five classes classifier by training 1072 labeled
pieces of data.
The interesting fact to note is that SmartInspect scanned

the whole image and intelligently identified the background
regions. Frameworks [10, 14] treated all the white regions as
defects. However, SmartInspect did not mark the background
regions as defects. Fig. 4 clearly shows the background
regions such as QR code, speaker, button, sensors, and
camera. Some light reflections and dust particles are
observed in these areas, which have been displayed in cyan
and yellow boxes respectively in Fig 4.

Furthermore, we tested our algorithm on glass samples
which have been previously marked as positive by human
inspection. Fig 5 shows one of the glass inspection results
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TABLE I: Accuracy Evaluation of the Proposed Method

Evaluation Glasses Defected Regions Type TP FN TN FP Sensitivity Specificity Precision Overall Accuracy

Clean Sample 133 D, LL, SR 128 3 1 0 0.9770 1 1 0.9777
Scratch Sample 191 S, D, LL, SR 181 0 9 1 1 0.9 0.9945 0.9947
Dirt Sample 235 D, LL, SR 177 0 0 58 1 0 0.7531 0.7531
Pit Sample 134 P, D, LL, SR 126 0 1 7 1 0.125 0.9473 0.9477

Fig. 4: SmartInspect test performance on key-challenging
test images with hundreds of defects. Sensors areas such as
QR Code, Camera, Speaker button have been successfully
distinguished from the defects.

of positive samples. We can notice that SmartInspect
outperformed human inspection in evaluating the quality
of glass samples. Three defects have been localized and
classified. For instance, two light leakages (D-1 and D-3)
and one dust particle (D-2) are detected which are shown in
orange and green boxes respectively in Fig 5.
Table II shows the comparison of SmartInspect with the

current advanced methods. It shows that our system is
quite intelligent in recognition of background areas. It is
also robust to achieve a high level of accuracy of up to 5
microns of the defected area, which is very important in
smart device glass. If the glass has defects of light leakage
or dirt, this can reduce the image quality of the screen.

VI. DISCUSSION

Using SmartInspect, we can label many 16K mobile
glass images, which are otherwise considered challenging to
correctly label at micro scale. SmartInspect can help in the
generation of the ground truth images much faster than doing
so manually, as it helps in the precise cropping and classifi-
cation. Once all the classes are refined, it becomes easy to
generate thousands of images with labeled defects. Another
method is by putting defect patches on the smartphone glass
and save the labels for ground truth.

Fig. 5: SmartInspect performance on the positive samples.
Green box shows the light leakage whereas the orange box
shows dirt detected on the glass screen.

A. Ablation Study

Using the proposed scheme, a whole glass image can
be taken as input without cropping and processing the
transparent areas. Without enhancing the images defects by
applying some filtration tools and increasing the sharpness
of captured images, our proposed technique outperformed
the state-of-the-art on all the samples. The result is shown
on right and left side of Fig. 4 for better visualization.

However, capturing system requires further improvements,
such as a controlled testing environment. By using the 16K
camera, we are able to detect defects down to 5 microns.
Although it detects dust, so the glass samples must be taken
in the dust-free area otherwise it will affect the results as
explained in section V-A. Sometimes specks of dirt seem
to be scratch as in the clean image. Also, a pit happens
along with scratch. Thus, the overall sample is treated as
pit defected. Furthermore, the sample must be put in an
experimental setup by using gloves to avoid fingerprints on
the screen.

B. Minimization of Inspection Time

To reduce the inspection time is another key-challenging
problem. There are several methods to localize the objects in
real-time. Faster R-CNN [20] is one of the best framework.
However, it requires a vast labeled dataset. SmartInspect
now makes it possible to label objects over smart phone
glasses to be used with Faster R-CNN for real time defect
detection. Processing each sample currently takes about
10-20 sec, which is quite long for industrial application.
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TABLE II: Robustness Comparison of the Proposed Method

Inspection Feature
PCA based method

[10]

MIF Based method

[14]

Proposed Method

(SmartInspect)

Detection of Defects YES YES YES

Classification of Defects NO YES YES

Distinguishing Defects

and Background
NO NO YES

Another idea is to use online network systems, where many
computers are connected with the server [14]. This can help
in enhancing the throughput of the overall system and will
be further enhanced using GPU integration along with deep
learning techniques.

VII. CONCLUSION

According to the experimental results, our semi-supervised
method performed excellent with high accuracy at micro
scale. It is capable of processing the smart phone glass
image as a whole without cropping transparent region from
it. Our approach has the ability to meet the high demand
of quality-inspection in production lines of several smart
devices in order to compete the market. Furthermore, the
current localization time of the defects can be reduced by
labeling vast smart phone glass images using Smart-Inspect.
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