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Abstract

The condition assessment of road surfaces is essential
to ensure their serviceability while still providing maximum
road traffic safety. This paper presents a robust stereo vision
system embedded in an unmanned aerial vehicle (UAV). The
perspective view of the target image is first transformed into
the reference view, and this not only improves the disparity
accuracy, but also reduces the algorithm’s computational
complexity. The cost volumes generated from stereo match-
ing are then filtered using a bilateral filter. The latter has
been proved to be a feasible solution for the functional min-
imisation problem in a fully connected Markov random field
model. Finally, the disparity maps are transformed by min-
imising an energy function with respect to the roll angle
and disparity projection model. This makes the damaged
road areas more distinguishable from the road surface. The
proposed system is implemented on an NVIDIA Jetson TX2
GPU with CUDA for real-time purposes. It is demonstrated
through experiments that the damaged road areas can be
easily distinguished from the transformed disparity maps.

1. Introduction
The frequent detection of different types of road damage,

e.g., cracks and potholes, is a critical task in road mainte-
nance [21]. Road condition assessment reports allow gov-
ernments to appraise long-term investment schemes and al-
locate limited resources for road maintenance [5]. However,
manual visual inspection is still the main form of road con-
dition assessment [15]. This process is, however, not only
tedious, time-consuming and costly, but also dangerous for
the personnel [16]. Furthermore, the detection results are
always subjective and qualitative because decisions entirely
depend on the experience of the personnel [17]. There-
fore, there is an ever-increasing need to develop automated
road inspection systems that can recognise and localise road
damage both efficiently and objectively [21].

Over the past decades, various technologies, such as vi-
bration sensing, active or passive sensing, have been used
to acquire road data and help technicians in assessing the

road condition [18]. For example, Fox et al. [9] developed a
crowd-sourcing system to detect road damage by analysing
accelerometer data obtained from multiple vehicles. Al-
though vibration sensors are cost-effective and only require
a small amount of storage space, the shape of a damaged
road area cannot be explicitly inferred from the vibration
data [15]. Furthermore, Tsai et al. [28] mounted two laser
scanners on a digital inspection vehicle (DIV) to collect 3D
road data for pothole detection. However, such vehicles are
not widely used, because of their high equipment and long-
term maintenance costs [5].

The most commonly used passive sensors for road con-
dition assessment include Microsoft Kinect and other types
of digital cameras [30]. In [14], Jahanshahi et al. utilised a
Kinect to acquire depth maps, from which the damaged road
areas were extracted using image segmentation algorithms.
However, Kinect sensors were initially designed for indoor
use, and they do not perform well when exposed to direct
sunlight, causing depth values to be recorded as zero [3].
Therefore, it is more effective to detect road damages us-
ing digital cameras, as they are cost-effective and capable
of working in outdoor environments [5].

With recent advances in airborne technology, unmanned
aerial vehicles (UAVs) equipped with digital cameras pro-
vide new opportunities for road inspection [25]. For exam-
ple, Feng et al. [8] mounted a camera on a UAV to capture
road images. The latter was then analysed to illustrate con-
ditions such as traffic congestion, road accidents, among
others. Furthermore, Zhang [34] designed a robust pho-
togrammetric mapping system for UAVs, which can recog-
nise different road defects, such as ruts and potholes, from
the captured RGB images. Although the aforementioned
2D computer vision methods can recognise damaged road
areas with low computational complexity, the achieved level
of accuracy is still far from satisfactory [14, 16]. Addition-
ally, the structure of a detected road damage is not obvi-
ous from only a single video frame, and the depth/disparity
information is more effective than RGB information in
terms of detecting severe road damages, e.g., potholes [21].
Therefore, it becomes increasingly important to use digital
cameras for 3D road data acquisition.
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To reconstruct 3D road scenery using digital cameras,
multiple camera views are required [11]. Images from dif-
ferent viewpoints can be captured using either a single mov-
able camera or an array of synchronised cameras [5]. In
[35], Zhang and Elaksher reconstructed the 3D road scenery
using structure from motion (SfM), where the keypoints
in each frame were extracted using scale-invariant feature
transform (SIFT) [19], and an energy function with respect
to all camera poses was optimised for accurate 3D road
scenery reconstruction. However, SfM can only acquire
sparse point clouds, which are usually infeasible for road
damage detection [14]. In this regard, many researchers
have resorted to using stereo vision technology to acquire
dense point clouds for road damage detection. In [5], Fan
et al. developed an accurate dense stereo vision algorithm
for road surface 3D reconstruction, and an accuracy of ap-
proximately ± 3 mm was achieved. However, the search
range propagation strategy in their algorithm makes it dif-
ficult to fully exploit the parallel computing architecture of
the graphics cards [5]. Therefore, the motivation of this pa-
per is to explore a highly efficient dense stereo vision algo-
rithm, which can be embedded in UAVs for real-time road
inspection.

The remainder of this paper is organised as follows. Sec-
tion 2 discusses the related work on stereo vision. Sec-
tion 3 presents the proposed embedded stereo vision sys-
tem. The experimental results for performance evaluation
are provided in Section 4. Finally, Section 5 summarises
the paper and provides recommendations for future work.

2. Related Work
The two key aspects of computer stereo vision are speed

and accuracy [27]. A lot of research has been carried out
over the past decades to improve either the disparity accu-
racy or the algorithm’s computational complexity [5]. The
state-of-the-art stereo vision algorithms can be classified as
convolutional neural network (CNN)-based [2,20,32,33,36]
and traditional [1,5,12,13,23,26]. The former generally for-
mulates disparity estimation as a binary classification prob-
lem and learns the probability distribution over all dispar-
ity values [20]. For example, PSMNet [2] generates the
cost volumes by learning region-level features with differ-
ent scales of receptive fields. Although these approaches
have achieved some highly accurate disparity maps, they
usually require a large amount of labelled training data to
learn from. Therefore, it is impossible for them to work
on the datasets without providing the disparity ground truth
[36]. Moreover, predicting disparities with CNNs is still
a computationally intensive task, which usually takes sec-
onds or even minutes to execute on state-of-the-art graphics
cards [27]. Therefore, the existing CNN-based stereo vision
algorithms are not suitable for real-time applications.

The traditional stereo vision algorithms can be classified

as local, global and semi-global [5]. The local algorithms
typically select a series of blocks from the target image and
match them with a constant block selected from the refer-
ence image [5]. The disparities are then determined by find-
ing the shifting distances corresponding to either the highest
correlation or the lowest cost [27]. This optimisation tech-
nique is also known as winner-take-all (WTA).

Unlike the local algorithms, the global algorithms gener-
ally translate stereo matching into an energy minimisation
problem, which can later be addressed using sophisticated
optimisation techniques, e.g., belief propagation (BP) [13]
and graph cuts (GC) [1]. These techniques are commonly
developed based on the Markov random field (MRF) [26].
Semi-global matching (SGM) [12] approximates the MRF
inference by performing cost aggregation along all direc-
tions in the image, and this greatly improves the accuracy
and efficiency of stereo matching. However, finding the op-
timum smoothness values is a challenging task, due to the
occlusion problem [23]. Over-penalising the smoothness
term can reduce ambiguities around the discontinuous ar-
eas, but on the other hand, can cause incorrect matches for
the continuous areas [5]. Furthermore, the computational
complexities of the aforementioned optimisation techniques
are significantly intensive, making these algorithms difficult
to perform in real time [27].

In [5], Fan et al. proposed a novel perspective transfor-
mation method, which improves both the disparity accuracy
and the computational complexity of the algorithm. Fur-
thermore, Mozerov and Weijer [23] proved that bilateral
filtering is a feasible solution for the energy minimisation
problem in a fully connected MRF model. The costs can
be adaptively aggregated by performing bilateral filtering
on the initial cost volumes [5]. Therefore, the proposed
stereo vision system is developed based on the work in [5]
and [23]. Finally, the estimated disparity maps are trans-
formed by minimising an energy function with respect to
the roll angle and disparity projection model. This makes
the damaged road areas become highly distinguishable from
the road surface.

3. System Description

The workflow of the proposed stereo vision system is de-
picted in Figure 1, where the system consists of three main
components: a) perspective transformation; b) dense road
stereo; and c) disparity transformation. The following sub-
sections describe each component in turn.

3.1. Perspective Transformation

In this paper, the road surface is treated as a ground
plane:

n>pW + β = 0, (1)
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Figure 1. Workflow of the proposed dense stereo system.

where pW = [xW, yW, zW]> is a 3D point on the road
surface in the world coordinate system (WCS), and n =
[nx, ny, nz]

> is the normal vector of the ground plane. The
projections of pW on the reference and target images, i.e.,
πref and πtar, are pI

ref = [uref, vref]
> and pI

tar = [utar, vtar]
>,

respectively. It should be noted that the left and right im-
ages are respectively referred to as the reference and target
images in this paper. pI

ref can be transformed to pI
tar using a

homography matrix H as follows [5]:[
pI

tar
1

]
= H

[
pI

ref
1

]
, (2)

where

H = Ktar

(
R1 −

tn>R0
−1

β

)
Kref

−1, (3)

t is a translation vector, R0 represents the rotation from the
WCS to the reference camera coordinate system (RCCS),
R1 denotes the rotation from the RCCS to the target cam-
era coordinate system (TCCS), and Kref and Ktar are the
intrinsic matrices of the reference and target cameras, re-
spectively. H can be estimated using at least four pairs of
matched correspondence points pI

ref and pI
tar [11]. In order

to simplify the estimation of H, the authors of [5] made sev-
eral hypotheses regarding R0, R1, Kref, Ktar, t and n. (2)
can be rewritten as follows:

utar = uref +
tcnx
β

(f sin θ − vo cos θ) + v
tcnx
β

cos θ, (4)

where f is the focus length of each camera, tc is the base-
line, θ is the pitch angle, and [uo, vo]

> is the principal point.
v = vref = vtar. (4) implies that a perspective distortion
always exists for the ground plane in two images when
θ is not equal to π/2, and this further affects the stereo
matching accuracy. Therefore, the perspective transforma-
tion aims to make the ground plane in the transformed tar-
get image similar to that in the reference image [5]. This
can be straightforwardly realised by shifting each point on
row v in the target image ∆u− δp pixels to the right, where
∆u = uref − utar, and δp is a constant used to guarantee

that all the disparities are non-negative. The values of tc,
nx, f , β, vo and θ can be estimated from a set of reliable
correspondence pairs Qref = [pI

ref0 ,p
I
ref1 , . . . ,p

I
refn ]> and

Qtar = [pI
tar0 ,p

I
tar1 , . . . ,p

I
tarn ]>. The transformed target im-

age is shown in Figure 1 as π′tar.

3.2. Dense Road Stereo

3.2.1 Cost Computation and Aggregation

According to [23], finding the best disparities is equivalent
to maximising the joint probability in (5):

P (pij , q) =
∏

pij∈P

Φ(pij , qpij
)

∏
npij

∈Npij

Ψ(pij ,npij
),

(5)
where pij denotes a node at the position of (i, j)
in the graph P , qpij

represents the intensity differ-
ences corresponding to different disparities d, Npij

=
{npij1

,npij2
,npij3

, · · · ,npijk
|npij

∈ P} represents the
neighbourhood system of pij , Φ(·) expresses the compati-
bility between each possible disparity d and the correspond-
ing intensity difference, and Ψ(·) expresses the compatibil-
ity between pij and its neighbourhood system Npij

. It is
noteworthy that puv refers to pI

ref = [uref, vref]
> and P

refers to the reference image. In practice, maximising the
joint probability in (5) is commonly formulated as an en-
ergy minimisation problem as follows [7]:

Ed(pij , d) =
∑

pij∈P

D(pij , d)+
∑

npij
∈Npij

V (pij ,npij
, d),

(6)
where D(·) computes the matching cost of pij , and V (·)
determines the aggregation strategy. For disparity estima-
tion algorithms based on the MRF, formulating V (·) in an
adaptive way is crucial and necessary, because the inten-
sity of a pixel in a discontinuous area usually differs greatly
from those of its neighbours [23]. Since bilateral filtering is
a feasible solution for the energy minimisation problem in
a fully connected MRF model [23], D(·) and V (·) can be
rewritten as follows:

D(pij , d) = c(pij , d), (7)
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where

c(p, d) =
(σrefσtar + µrefµtar)

σrefσtar

− 1

nσrefσtar

( ∑
q∈N +

p

iref(q)itar(q− [d, 0]>)

) (8)

is the cost function; iref(p) and itar(p) represent the pixel
intensities at p in the reference and target images, respec-
tively; µref and µtar represent the means of the pixel intensi-
ties within the reference and target blocks, respectively; and
σref and σtar denote the standard deviations of the reference
and target blocks, respectively. N +

p = {p} ∪Np.

V (pij ,npij , d) =
∑

npij
∈Npij

ω(pij ,npij )c(npij , d), (9)

where

ω(p,np) = exp

{
−
‖p− np‖22

σ02
− (iref(p)− iref(np))2

σ12

}
(10)

is controlled by two parameters σ0 and σ1, with σ0 based
on spatial distance and σ1 based on colour similarity. The
cost c of each neighbour np can therefore be adaptively ag-
gregated to p. Finally, Ed(p, d) is normalised by rewriting
(6) as follows:

Ed(p, d) =

∑
q∈N +

p

ω(p,q)D(q, d)∑
q∈N +

p

ω(p,q)
, (11)

The computed matching costs are stored in two cost vol-
umes, as shown in Figure 1.

3.2.2 Disparity Optimisation and Refinement

By applying WTA optimisation on the reference and target
cost volumes, the best disparities can be estimated. Since
the perspective view of the target image has been trans-
formed in Section 3.1, the estimated disparities on row v
should be added ∆u − δp to obtain the disparity map be-
tween the original reference and target images. The oc-
cluded areas in the reference disparity map are then re-
moved by finding the pixels p satisfying the following con-
dition [4]:∥∥`ref(p)− `tar(p− [`ref(p), 0]>)

∥∥2
2
> δr, (12)

where `ref and `tar represent the reference and target dispar-
ity maps, respectively. δr = 1 is the threshold for occlusion
removal. Finally, a subpixel enhancement is performed to
increase the resolution of the estimated disparity values [5]:

`(p) = `ref(p) +
c(p, d− 1)− c(p, d+ 1)

2c(p, d− 1) + 2c(p, d+ 1)− 4c(p, d)
,

(13)

where `, illustrated in Figure 1, represents the final disparity
map in the reference perspective view.

3.3. Disparity Transformation

The proposed system focuses entirely on the road surface
whose disparity values decrease gradually from the bottom
of the disparity map to its top, as shown in Figure 1. For
a stereo rig whose baseline is perfectly parallel to the road
surface, the roll angle ψ equals zero and the disparities on
each row have similar values, which can also be proved by
(4). Therefore, the projection of the road disparities on
a v-disparity image can be represented by a linear model:
f(v) = α0 + α1v. A column vector α = [α0, α1]> stor-
ing the coefficients of the disparity projection model can be
estimated as follows:

α = arg min
α

Et, (14)

where
Et = ‖d−Vα‖22 , (15)

d = [`(p0), `(p1), · · · , `(pn)]> stores the disparity val-
ues, v = [v0, v1, · · · , vn]> stores the vertical dispar-
ity coordinates, 1k represents a k × 1 vector of ones, and
V = [1n+1 v]. Applying (15) to (14) results in the follow-
ing expression:

α = (V>V)−1V>d. (16)

The minimum energy Etmin can be obtained by applying
(16) to (15):

Etmin = d>d− d>V(V>V)−1V>d. (17)

However, in practice, the stereo rig baseline is not always
perfectly parallel to the road surface, and this introduces a
non-zero roll angle ψ into the imaging process. The dispar-
ity values will change gradually in the horizontal direction,
and this makes the approach of representing the road dispar-
ity projection using a linear model problematic. Addition-
ally, the minimum energy Etmin becomes higher, due to the
disparity dispersion in the horizontal direction. Hence, the
proposed disparity transformation first finds the angle corre-
sponding to the minimumEtmin. The image rotation caused
by ψ is then eliminated, and α is subsequently estimated.

To rotate the disparity map around a given angle ψ, each
set of original coordinates [u, v]> is transformed to a set of
new coordinates [x(ψ), y(ψ)]> using the following equa-
tions [6]:

x(ψ) = u cosψ + v sinψ, (18)

y(ψ) = v cosψ − u sinψ. (19)

The energy function in (15) can, therefore, be rewritten as
follows:

Et(ψ) = ‖d−Y(ψ)α‖22 , (20)
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where y = [y0(ψ), y1(ψ), · · · , yn(ψ)]> and Y(ψ) =
[1n+1 y(ψ)]. (21) is obtained by applying (20) to (14):

α(ψ) = J(ψ)d, (21)

where
J(ψ) = (Y(ψ)>Y(ψ))−1Y(ψ)>. (22)

Etmin can also be obtained by applying (21) and (22) to (20):

Etmin(ψ) = d>d− d>Y
(
Y(ψ)>Y(ψ)

)−1
Y(ψ)>d.

(23)
Roll angle estimation is, therefore, equivalent to the follow-
ing energy minimisation problem:

ψ = arg min
ψ

Etmin(ψ) s.t. ψ ∈ (−π
2
,
π

2
], (24)

which can be formulated as an iterative optimisation prob-
lem as follows [24]:

ψ(k+1) = ψ(k) − λ∇Etmin(ψ(k)), k ∈ N0, (25)

where λ is the learning rate. (25) is a standard form of gra-
dient descent. The expression of∇Etmin is as follows:

∇Etmin(ψ) = −2d>W(ψ)d, (26)

where

W(ψ) =
(
I−Y(ψ)J(ψ)

)
∇Y(ψ)J(ψ), (27)

I is an identity matrix. If λ is too high, (25) may overshoot
the minimum. On the other hand, if λ is set to a relatively
low value, the convergence of (25) may require a lot of iter-
ations [24]. Therefore, selecting a proper λ is always essen-
tial for gradient descent. Instead of fixing the learning rate
with a constant value, backtracking line search is utilised to
produce an adaptive learning rate:

λ(k+1) =
λ(k)∇Etmin(ψ(k))

∇Etmin(ψ(k))−∇Etmin(ψ(k+1))
, k ∈ N0.

(28)
The selection of the initial learning rate λ(0) will be dis-
cussed in Section 4. The initial approximation ψ(0) is set to
0, because the roll angle in practical experiments is usually
small. It should be noted that the estimated ψ at time t is
used as the initial approximation at time t + 1. The opti-
misation iterates until the absolute difference between ψ(k)

and ψ(k+1) is smaller than a preset threshold δψ . α can be
obtained by substituting the estimated roll angle ψ into (21).
Finally, each disparity is transformed using:

`′(p) = `(p)− α0 + α1(u sinψ − v cosψ) + δt, (29)

where `′, shown in Figure 1, represents the transformed dis-
parity map, and δt is a constant used to make the trans-
formed disparity values positive.

ZED Stereo 

Camera

GPS
Jetson TX2 GPU

Figure 2. Experimental set-up.

4. Experimental Results
In this section, we evaluate the performance of the pro-

posed stereo vision system both qualitatively and quantita-
tively. The following subsections detail the experimental
set-up, datasets, implementation notes and the performance
evaluation.

4.1. Experimental Set-Up

In the experiments, a ZED stereo camera1 is mounted
on a DJI Matrice 100 Drone2 to capture stereo road im-
ages. The maximum take-off weight of the drone is 3.6 kg.
The stereo camera has two ultra-sharp six-element all-glass
lenses, which can cover the scene up to 20 m1. The cap-
tured stereo road images are processed using an NVIDIA
Jetson TX2 GPU3, which has 8 GB LPDDR4 memory and
256 CUDA cores. An illustration of the experimental set-up
is shown in Figure 2.

4.2. Datasets

Using the above experimental set-up, three datasets in-
cluding 11368 stereo image pairs are created. The resolu-
tion of the original reference and target images is 640×360.
In each dataset, the UAV flight trajectory forms a closed
loop, which makes it possible to evaluate the performance
of the state-of-the-art visual odometry algorithms using our
created datasets. The datasets and a demo video are publicly
available at http://www.ruirangerfan.com.

4.3. Implementation Notes

In the practical implementation, the reference and target
images are first sent to the global memory of the GPU from
the host memory. However, a thread is more likely to fetch
the data from the closest addresses that its nearby threads
accessed4. This fact makes the use of cache in global mem-
ory impossible. Furthermore, constant memory and texture
memory are read-only and cached on-chip, and this makes
them more efficient than global memory for memory re-
questing4. Therefore, we store the reference and target im-

1https://www.stereolabs.com/
2https://www.dji.com/uk/matrice100
3https://developer.nvidia.com/embedded/buy/jetson-tx2
4https://docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf

http://www.ruirangerfan.com


(a)

(b)

(c)

Figure 3. Experimental results; (a) reference images; (b) dense subpixel disparity maps; (c) transformed disparity maps.

(a) (b) (c) (d)

Figure 4. Examples of the KITTI stereo experimental results; (a) reference images, where the areas in magenta are the manually selected
road regions; (b) ground truth disparity maps; (c) results obtained using PSMNet; (d) results obtained using the proposed algorithm.

ages in the texture memory to reduce the memory requests
from the global memory. This is realised by creating two
texture objects in the texture memory and binding these ob-
jects with the addresses of the reference and target images.
The pixel intensities can therefore be fetched from the tex-
ture objects instead of the global memory. In addition, (10)
is rewritten as follows:

ω(p,np) = ω0(p,np)ω1(p,np), (30)

where

ω0(p,np) = exp

{
−
‖p− np‖22

σ02

}
(31)

and

ω1(p,np) = exp

{
− (iref(p)− iref(np))2

σ12

}
. (32)

The values of ω0 and ω1 are pre-calculated and stored in the
constant memory to reduce the repetitive computations of
ω. Moreover, the values of µref, µtar, σref and σtar are also
pre-calculated and stored in the global memory to avoid the
unnecessary computations in stereo matching.

4.4. Performance Evaluation

4.4.1 Disparity Estimation

Some experimental results are illustrated in Figure 3. N is
a 120-connected neighbourhood system. σ0 and σ1 are em-
pirically set to 1.5 and 5.5, respectively. Since the datasets
we created do not contain disparity ground truth, the KITTI5

stereo 2012 and 2015 datasets [10, 22] are utilised to quan-
tify the accuracy of the proposed system. Some experimen-
tal results of the KITTI stereo datasets are shown in Figure
4, where the road regions are manually selected to evaluate
the accuracy of the road disparities. Furthermore, we com-
pare the proposed method with PSMNet [2] in terms of the
percentage of error pixels ep and root mean squared error
er. The expressions of ep and er are as follows:

ep =
1

m

∑
p

δ
(
|`(p)− ˜̀(p)|, εd

)
× 100%, (33)

er =

√
1

m

∑
p

(
`(p)− ˜̀(p)

)2
, (34)

where

δ(x, εd) =

{
1 (x > εd)

0 (x ≤ εd)
, (35)

5http://www.cvlibs.net/datasets/kitti/
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(a)

(b)

Figure 5. Disparity maps of some motion blurred images; (a) ref-
erence images; (b) disparity maps.

m is the total number of disparities used for evaluation, εd
is the disparity error tolerance, and ˜̀ represents the ground
truth disparity map. The comparison of ep and er between
these two methods is shown in Table 1, where it can be ob-
served that the proposed method outperforms PSMNet in
terms of ep and er when εd is set to 2, while PSMNet per-
forms better than our method when εd is set to 3. It should
be noted that the proposed algorithm is capable of estimat-
ing disparity maps between a pair of motion blurred stereo
images, as shown in Figure 5. This also demonstrates the
robustness of the proposed dense stereo system.

Method er
ep

εd = 2 εd = 3

PSMNet 1.039 1.345 0.016
Ours 0.409 0.217 0.023

Table 1. Comparison between PSMNet and the proposed method
in terms of disparity accuracy.

In addition to the disparity accuracy, the execution speed
of the proposed dense stereo vision system is also quanti-
fied to evaluate the overall system’s performance. Owing to
the fact that the image size and disparity range are not con-
stant among different datasets, a general way of evaluating
the performance in terms of processing speed is to measure
millions of disparity evaluations per second [27]:

Mde/s =
umaxvmaxdmax

t
× 10−6, (36)

where the resolution of the disparity map is umax × vmax,
dmax is the maximum disparity value, and t is the process-
ing time in seconds. The runtime of the proposed dense
stereo vision system on the Jetson TX2 GPU is approxi-
mately 152.889 ms, and the resolution of the disparity map
is 695 × 361. Therefore, the value of Mde/s is 49.231,
which is much higher than most stereo vision systems im-
plemented on powerful graphics cards.

4.4.2 Roll Angle Estimation

In the experiments, we select a range of λ(0) and record
the number of iterations that (25) takes to converge to the

(a) (b) (c)

Figure 6. Examples of the roll angle estimation experiments; (a)
reference images, the areas in magenta are the manually selected
road regions; (b) original disparity maps; (c) disparity maps ro-
tated around the estimated roll angles.

minimum. It is shown that λ(0) = 10 is the optimum value
when the threshold δψ is set to π

1.8×106 rad (0.0001◦).
Furthermore, a synthesised stereo dataset from EISATS6

[29,31] is used to quantify the accuracy of the proposed roll
angle estimation algorithm. The roll angle of each image in
this dataset is perfectly zero. Therefore, we manually rotate
the disparity maps around a given angle, and then estimate
the roll angles from the rotated disparity maps. Examples of
the roll angle estimation experiments are shown in Figure 6,
where it can be observed that the effects due to image rota-
tion are effectively corrected. When δψ is set to π

1.8×106 rad,
the average difference ∆θ between the actual and estimated
roll angles is approximately 0.012 rad. The runtime of the
proposed roll angle estimation on the Jetson TX2 GPU is
approximately 7.842 ms.

4.4.3 Disparity Transformation

In [5], Fan et al. published three road datasets containing
various types of road damages, such as potholes and cracks.
Therefore, we first use their datasets to qualitatively eval-
uate the performance of the proposed disparity transforma-
tion algorithm. Examples of the transformed disparity maps
are illustrated in Figure 7, where it can be observed that
the disparities of the road surface have similar values, while
their values differ greatly from those of the road damages.
This fact enables the damaged road areas to be easily recog-
nised from the transformed disparity maps.

The KITTI stereo datasets are further utilised to evaluate
the performance of disparity transformation. Examples of
the KITTI stereo datasets are shown in Figure 8. To quantify
the accuracy of the transformed disparities, we compute the
standard deviation σd of the transformed disparity values as

6https://ccv.wordpress.fos.auckland.ac.nz/eisats/set-2/
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(a)

(b)

Figure 7. Examples of the disparity transformation experiments; (a) reference images; (b) transformed disparity maps.

(a)

(b)

(c)

Figure 8. Disparity transformation experimental results of the KITTI stereo datasets; (a) reference images, where the areas in magenta are
the manually selected road regions; (b) ground truth disparity maps; (c) transformed disparity maps.

follows:

σd =

√
1

m

∥∥∥∥s− s>1m
m

∥∥∥∥2
2

, (37)

where s = [`′(p0), `′(p1), . . . , `′(pm−1)]> stores the
transformed disparity values. The average σd value of the
KITTI stereo datasets is 0.519 pixels. However, if the im-
age rotation effects caused by the non-zero roll angle are
not eliminated, the average σd value becomes 0.861 pixels.
The runtime of the disparity transformation on the Jetson
TX2 GPU is around 1.541 ms.

5. Conclusion and Future Work
This paper presented a robust dense stereo vision system

embedded in a DJI Matrice 100 UAV for road condition as-
sessment. The perspective transformation greatly improved
the disparity accuracy and reduced the algorithm computa-
tional complexity, while the disparity transformation algo-
rithm enabled the UAV to estimate roll angles from disparity
maps. The damaged road areas became highly distinguish-
able in the transformed disparity maps, and this can provide
new opportunities for UAV-based road damage inspection.
The proposed system was implemented with CUDA on a
Jetson TX2 GPU, and real-time performance was achieved.

In the future, we plan to use the obtained disparity maps
to estimate the flight trajectory of the UAV and reconstruct
the 3D maps using the state-of-the-art simultaneous locali-
sation and mapping (SLAM) algorithms.
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