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Abstract— Modern LiDAR-SLAM (L-SLAM) systems have
shown excellent results in large-scale, real-world scenarios.
However, they commonly have a high latency due to the expen-
sive data association and nonlinear optimization. This paper
demonstrates that actively selecting a subset of features signifi-
cantly improves both the accuracy and efficiency of an L-SLAM
system. We formulate the feature selection as a combinatorial
optimization problem under a cardinality constraint to preserve
the information matrix’s spectral attributes. The stochastic-
greedy algorithm is applied to approximate the optimal results
in real-time. To avoid ill-conditioned estimation, we also propose
a general strategy to evaluate the environment’s degeneracy
and modify the feature number online. The proposed feature
selector is integrated into a multi-LiDAR SLAM system. We
validate this enhanced system with extensive experiments cov-
ering various scenarios on two sensor setups and computation
platforms. We show that our approach exhibits low localization
error and speedup compared to the state-of-the-art L-SLAM
systems. To benefit the community, we have released the source
code: https://ram-lab.com/file/site/m-loam.

I. INTRODUCTION

A. Motivation

State estimation is a classic and fundamental problem
in robotics [1]. Over the past decades, LiDARs have at-
tracted much attention from the simultaneous localization
and mapping (SLAM) community due to their accuracy and
reliability in range measurements. Recent work [2]–[6] has
pushed LiDAR-SLAM (L-SLAM) systems that are accurate
and robust. However, L-SLAM systems commonly present
a high latency on a variety of on-board processors with
limited computation resources. This issue is critical if the
scale of SLAM becomes large, or modules such as high-
level decision making are integrated. Thus, towards real-time
SLAM for diverse applications, such systems must exhibit
low latency (time delay between input and output) along with
the preservation of their accuracy and robustness.

L-SLAM comprises two major computational tasks in L-
SLAM: data association and optimization. Data association
indicates feature matching between the current frames to
the reference frames, while optimization solves the pose
parameters by maximizing a likelihood function given a
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set of constraints. Compared to visual features such as
SIFT [7] and ORB [8], matching 3D features is known to
be less accurate [9], thus producing much higher outlier
rates. To enforce accuracy, most L-SLAM systems exploit
thousands of features to solve a large nonlinear least-squares
(NLS) problem. However, this scheme presents significant
drawbacks. The data association has to perform numerous
nearest-neighbor queries to match correspondences, which is
commonly time-consuming. Given plentiful measurements,
the computational complexity of the optimization based on
gradient descent also grows quadratically.

A prevalent solution to bound the complexity is to perform
data sampling. For instance, many LiDAR-based object de-
tectors [10]–[12] leverage the farthest point sampling (FPS)
[13] to process input points. However, classic sampling meth-
ods do not consider downstream tasks specifically. Taking
FPS as an example, it selects a subset of points with the
objective to achieve a maximal coverage of the input set [14].
But for SLAM, it would be better if the process of point
selection conforms to the optimization objective. Ideally,
exploiting the set of selected features in optimization should
lead to low latency and performance improvements.

B. Contributions

This paper proposes a general and straightforward feature
selection algorithm for L-SLAM systems. We have a crucial
observation behind our approach: that not all geometric
constraints contribute equally to the localization accuracy.
Intuitively, well-conditioned constraints should distribute dif-
ferent directions, constraining the pose from different an-
gles [15]. For instance, orthogonal constraints commonly
outweigh their parallel counterparts. The selected features,
which are the most valuable/informative to the pose estima-
tion, are defined as good features [16], and both the data
association and state optimization utilize them only.

This paper extends our previous work on multi-LiDAR
SLAM [17]. Multiple LiDARs enable a robot to maximize its
perceptual awareness of environments and obtain sufficient
measurements, but inevitably increase the processing time.
In this paper, we investigate the latency issue. From the tra-
ditional perspective, there is a trade-off between the latency
and accuracy [18]. But in Section VI, we demonstrate that
the proposed feature selection method boosts the accuracy
(> 22% error reduction) and efficiency (> 30% time reduc-
tion) of an L-SLAM system. Furthermore, by evaluating the
environment’s degeneracy and adaptively setting the number
of good features, our method also works well in non-ideal
cases. Overall, our work presents the following contributions:
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1) We transform the good feature section in LiDAR-
based pose estimation into a problem that preserves the
spectral property of information matrices.

2) We propose and integrate the feature selection method
into a multi-LiDAR SLAM system. We also propose to
evaluate the environment’s degeneracy and adaptively
change the number of good features online.

3) We evaluate our approach under extensive experiments
with two sensor setups, and computation platforms in
terms of accuracy, robustness, and latency.

II. RELATED WORK

Scholarly works on SLAM are extensive. Since we focus
on the optimal feature selection to improve L-SLAM’s ef-
ficiency, we review related works on two research topics:
feature extraction and selection.

A. Feature Extraction

Feature extraction is a process to build an informative,
compact, and interpretable representation of raw measure-
ments [19]. It has played a crucial role in the front end
of many L-SLAM systems to facilitate subsequent tasks.
SuMa and its variants [4], [20], [21] convert point clouds into
range images and generated surfel-based maps. In contrast,
LOAM [2] was proposed to extract features on both edge
lines and planar surfaces, and LEGO-LOAM [3] leverages
ground features to constrain poses in the vertical direction.
The following approaches apply visual detection [22] or
directly used dense scanners [5], [23] to enhance the feature
extraction in noisy or structureless environments. To decrease
the number of features, Zhao et al. [24] presented a proba-
bilistic framework to extract important region of interest by
calculating features’ densities and distributions. This solution
enables the removal of dynamic objects and redundant points
in busy urban environments.

All of these methods extract features depending on lo-
cal geometric structures, but they have not considered the
explicit relationship between the pose estimation to select
the most useful features. Our system is built on LOAM’s
framework in feature selection. As a complement to the
above appearance-based approaches, our solution identifies
a set of good features by utilizing motion information.

B. Feature Selection

Motion-based feature selection methods have been widely
applied in visual SLAM [16], [25]–[27], and many of them
are based on the covariance or information matrices that
capture uncertainties of poses [28]. These methods formulate
the feature selection as a submatrix selection problem and
aim to find a subset of features with the objective to preserve
the information matrix’s spectral attributes. Recent works by
Carlone et al. [26] and Zhao et al. [16] have investigated
greedy-based algorithms [29] to solve this NP-hard feature
selection problem at a polynomial-time complexity.

A common limitation of Carlone’s and Zhao’s works is
that they assure sufficient features to be available. Under this
assumption, the pose optimization with a set of good features

remains well-conditioned. However, robots sometimes need
to work in degraded environments such as textureless regions
for cameras and narrow corridors for LiDARs. Therefore,
only utilizing good features with a fixed size becomes
degenerate. Based on Zhao’s feature selection approach,
our method additionally evaluates environments’ degeneracy
online, which enables us to adaptively change the number of
good features to avoid the risk of ill conditions.

III. NONLINEAR LEAST-SQUARES POSE ESTIMATION

We formulate the pose estimation of a L-SLAM system
as an maximum likelihood estimation (MLE) [30]:

x̂K = arg max
xK

p(FK |xK) = arg min
xK

f(xK ,FK), (1)

where FK represents the available features at the Kth frame,
xK is the robot’s pose to be optimized, and f(·) is the
objective function. Assuming the measurement model to be
Gaussian, problem (1) is solved as an NLS problem:

x̂K = arg min
xK

N∑
i=1

ρ
(∣∣∣∣r(xK ,pKi)

∣∣∣∣2
Wi

)
, (2)

where ρ(·) is the robust loss [31] and Wi is the covariance
matrix. Problem (2) is equivalently rewritten as [30]

x̂K = arg min
xK

N∑
i=1

∣∣∣∣r(xK ,pKi)
∣∣∣∣2

Σi
, (3)

where Σ−1i = ρ′(||r(xop,K ,pKi)||2Wi
)W−1

i is the alterna-
tive covariance matrix and ρ′(·) is the derivative of ρ(·). (2)
is simplified as an iterative reweighed least-squares prob-
lem. Iterative methods such as Gauss-Newton or Levenberg-
Marquardt can offen be used to solve this problem. These
methods locally linearize the objective function by com-
puting the Jacobian w.r.t. xK as J = ∂f/∂xK . Given an
initial guess, xK is iteratively optimized by usage of J until
convergence to find an optimum.

At the final iteration, the least-squares covariance of the
state is calculated as Ξ = Λ−1 [32], where Λ = J>J
is called the information matrix. This equation reveals the
relationship between the pose covariance and information
matrix. Generally, exploiting plentiful measurements in opti-
mization should minimize poses’ uncertainties. This explains
why SLAM systems commonly use all available features.

This paper focuses on low-latency applications in which
the speed is highly prioritized. It requires us to utilize only a
subset of features to accelerate the algorithm. As suggested
in [16], we can check whether a feature is selected or not by
comparing the gains in spectrum of Λ. The word: “spectrum”
denotes the set of eigenvalues of a matrix [33].

IV. METHODOLOGY

This section first formulates the good feature selection
problem and introduces a metric to guide the selection. We
apply the stochastic-greedy method, which combines the ran-
dom sampling procedure, to solve this problem in real time.
We then extend this algorithm to achieve efficient feature
selection. Finally, we propose to evaluate the environment’s
degeneracy online to avoid ill-conditioning estimation.
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A. Problem Formulation

We denote N = |FK | as the number of all available
features, M as the maximum number of selected features,
and SK as the good feature set. We denote f(·) as the metric
to quantify the spectral attribute of a matrix. We formute the
feature selection problem under a cardinality constraint as

arg max
SK⊂FK

f
[
Λ(SK)

]
subject to |SK | ≤M, (4)

where Λ(SK) is the information matrix on the good feature
set. There are several options to define f(Λ): tr(Λ) the trace
[34], λmin(Λ) the minimum eigenvalue [26], and log det(Λ)
the log determinant [16].

Since problem (4) is NP-hard, we cannot find efficient
algorithms to obtain the optimal subset for real-time appli-
cations. Fortunately, all these metrics are submodular and
monotone increasing [29], allowing the solution to be ap-
proximate via greedy methods with a performance guarantee.
Zhao et al. [16] experimented with these metrics in bundle
adjustment, where the log determinant was demonstrated to
have the lowest pose error and computation time. We thus
choose the log det(Λ) option as our metric.

B. Stochastic Greedy Algorithm

The class of greedy methods has been studied to solve
problem (4). Here, we introduce the stochastic-greedy algo-
rithm [29], which applies randomized acceleration to avoid
brute-force search. The idea is simple: at each round, the
current best feature is picked up by examining all elements
from a random subset. This is different from the simple
greedy approach, which has to search the whole set. We
define the size of the random subset as N

M log( 1
ε ), where

ε is the decay factor. The time complexity is O(N log( 1
ε )),

which is independent of M . The stochastic-greedy algorithm
has been proved to have near-optimal performance in [29]:

Theorem 1: Let f(·) be the non-negative, monotone, and
submodular function. Setting the size of the random subset
as N

M log( 1
ε ). Denote S∗K as the optimal set and S#K the

result found by the stochastic-greedy algorithm. S#K enjoys
the approximation guarantees in expectation:

E
(
f
[
Λ(S#K)

])
≥ (1− 1/e− ε)︸ ︷︷ ︸

expected ratio

f
[
Λ(S∗K)

]
. (5)

C. Good Feature Selection for Pose Estimation

Based on the theoretical results, we employ the stochastic-
greedy to achieve the feature selection for pose estimation.
The detailed pipeline is summarized in Algorithm 1.

1) Overview: The algorithm starts with the log det(·) met-
ric, the number of good features M , the decay factor
ε, the map in the reference frame MK , the set of all
available features in the current frame FK , and the
initial pose xK . It produces the good feature set S#K .

2) Line 2: The loop is exited if one of the following
conditions is satisfied: M good features are found
or the computation time exceeds tmax. The second
condition limits the cost of finding good features. Since

Algorithm 1: Stochastic Greedy-Based Good Feature
Selection for NLS Pose Estimation
Input: f(·) , log det(·), M , ε, MK , FK , xK ;
Output: good feature set S#K ;

1 Initialize the set S#K = ∅;
2 while |S#K | < M and tcomp < tmax do
3 R ← the random subset is obtained by sampling

N
M log( 1

ε ) random elements from FK\S#K ;
4 foreach pi ∈ R do
5 Search the correspondence from MK ;
6 if the correspondence is found then
7 Compute the residual ri(x̌K);
8 Compute Λi = J>i Σ−1i Ji w.r.t. pi where Ji

is the Jacobian of ri(·);
9 else

10 R ← R\{pi}; FK ← FK\{pi};

11 i∗ ← arg maxpi∈R log det
[
Λ(S#K) + Λi

]
;

12 Λ(S#K)← Λ(S#K) + Λi∗ ;
13 S#K ← S

#
K ∪ {pi∗}; FK ← FK\{pi∗};

log det(·) is submodular with diminishing returns, early
termination does not induce much information loss.

3) Lines 4–10: The correspondence of each feature in the
random subset R is found from MK . The residual is
then computed. If a feature has already been visited at
previous iterations, we skip these steps.

4) Lines 11–13: The feature which leads to the maximum
enhancement of the objective is selected. After that, the
information matrix Λ(S#K), S#K , and FK are updated.

Furthermore, the process of feature selection implicitly
performs outlier rejection: outliers are penalized by the ro-
bust loss in (3) with relatively small weights. They contribute
less to Λ than standard features and will be selected with
a low probability. Therefore, selecting good features might
reduce the biases between estimates and the ground truth.

D. Setting the Number of Good Features

Setting a proper size for the good feature set is essential to
the system. Previous methods manually set M as a constant
value (M = 100 [16]) or a fixed ratio of all features (M =
0.5N [26]). These schemes are feasible if sufficient features
are always available. But if a robot has to work in non-
ideal scenarios such as textureless walls or narrow corridors,
utilizing a small set of features is not reliable. On the other
hand, if we change the hard-coded number M in a specific
situation, it will inevitably increase the cost of deploying and
maintaining a SLAM system on real platforms.

It would be better if M were adaptively changed by
evaluating the degeneracy online. Inspired by [15], the mag-
nitude of the degeneracy can be quantified by a factor λ.
Differently, we define the factor using the log determinant
metric as λ = log det Λ(FK). Computing the information
matrix on the full feature set is time-consuming. Since the
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Fig. 1. The value of the degeneracy factor λ on different sequences.
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(a) Full feature set (4693 points). (b) Good features (929 points).

Fig. 2. A qualitative example of good features selected by our greedy-
based feature selection algorithm. This method pick up points on objects
which provide strong geometric constraints, as indicated in the region 1 and
3. Points on the ground, which occupy around 50% of the full feature set,
are indicated by the region 2. Since they only constrain poses on the z−
axis, our method only selected them with a small number. This is the main
difference from the fully random sampling method (see Section VI-B).

robot performs a continuous movement in an environment,
it is enough to compute λ at every time interval (1s ∼ 2s).

Fig. 1 plots the values of λ on different sequences.
RHD01lab contains several degenerate scenarios, while other
sequences do not (see Section VI-C). Therefore, we empir-
ically set λth = 42. If λ ≥ λth, we select 20% of features
from the full set as the good features (i.e., M = 0.2N ).
Otherwise, we use 80% of features from the set.

V. GF-ENHANCED MULTI-LIDAR SLAM SYSTEM

The proposed feature selection method has been verified
in an L-SLAM system called M-LOAM [17]. To distinguish
it from the original system, the enhanced system is denoted
by M-LOAM-gf. M-LOAM-gf solves SLAM with multiple
LiDARs by two algorithms: odometry and mapping. Gen-
erally, these algorithms are designed to estimate poses in
a coarse-to-fine fashion. Since they similarly formulate the
NLS problem for pose estimation, the feature selection can
be applied to both. Fig. 3 illustrates the overall structure of
M-LOAM-gf. Note that loop closure is not included.

We give real definitions to the feature set FK . We extract
features located on local edges and planar surfaces from
the LiDARs’ raw measurements. According to the points’
curvatures, we select a set of edge and planar features to form
FK . The next step is to match features between the reference
frame and the robot’s current frame. In both odometry and
mapping, we use the feature map in the reference frame to
associate data with FK . The only difference is the scale. The
local map in odometry is built within a small time interval
(< 0.5s), while the global map in mapping is constructed
using all features in keyframes. For convenience, we use
MK to denote both the local and global maps.

Geometric 

Features

LiDAR 1 (10Hz)

LiDAR 2 (10Hz)

LiDAR 3 (10Hz)

Feature 

Extraction

Local Map

Good Feature-Based 

Data Association

Optimization

Odometry (10Hz)

Good Feature-Based 

Data Association

Optimization

Mapping (5Hz)

Global Map

Degeneracy Evaluation Degeneracy Evaluation

Fig. 3. Block diagram of the pipeline of M-LOAM-gf.

TABLE I
MEAN AND STD OF log detΛ(S#K) ON RHD AND OR SEQUENCES.

Sequence Greedy Rnd Full
RHD01lab 35.1± 2.3 30.3± 2.7 39.3± 2.5

RHD02garden 41.4± 4.0 39.7± 5.0 48.2± 5.1

OR01 52.6± 1.0 52.7± 1.6 61.8± 1.7

OR02 50.8± 0.9 51.8± 2.2 60.1± 2.1

OR03 51.7± 1.4 49.9± 2.6 58.3± 2.4

OR04 51.6± 1.2 50.3± 2.2 58.7± 2.1

OR05 52.5± 1.7 51.9± 2.7 59.3± 2.4

Average 47.96 46.66 55.10

With the found correspondences, we can optimize the
relative transformation by minimizing the sum of all errors.
The good feature selection algorithm enables M-LOAM-gf to
select only a set of features in optimization while preserving
the spectrum of the information matrix. An example of good
features are shown in Fig. 2. After obtaining the good feature
set S#K in Section IV-C, the objective function is written as

x̂K = arg min
xK

∑
p∈S#

K

∣∣∣∣r(xK ,p)
∣∣∣∣2

Σp
, (6)

for which the expression of the residuals and Jacobians is
detailed in our supplementary material [35].

VI. EXPERIMENT

We evaluate the performance of M-LOAM-gf on real-
world experiments. First, we validate the stochastic-greedy-
based feature selection. Second, we demonstrate the lo-
calization accuracy of M-LOAM-gf in various scenarios
covering indoor environments and outdoor urban roads with
two multi-LiDAR setups. Three SOTA L-SLAM systems are
compared. We also study M-LOAM-gf’s latency on an on-
board processor with limited computation resources.

A. Implementation Details

We use the PCL library [37] to process point clouds
and the Ceres Solver [38] to solve the NLS problems. Our
method is tested on sequences collected with two platforms:

• Real Handheld Device (RHD) is made for indoor tests
and shown in Fig. 4(a). It is installed with two VLP-161.
We held this device to collect two sequences (RHD01lab
and RHD02garden) with an average speed of 2m/s.

1https://velodynelidar.com/products/puck
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(a) The real handheld device (RHD).

1

2

1

2

(b) Results on the RHD01lab.
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(c) Results on the RHD02garden.

Fig. 4. Estimated trajectories of different methods and the scene image on two RHD sequences.

Fig. 5. M-LOAM-gf’s trajectories on OR01, OR03, OR04, and OR05 from the Oxford Robocar dataset [36] are aligned with the ground truth .

Fig. 6. Results on the OR02. (left) Map and M-LOAM-gf’s path. (right)
Estimated trajectories of different methods are aligned with the ground truth.

• Oxford Robocar (OR) [36] is a vehicle equipped with
two HDL-32E2. Datasets were recorded by driving the
car on urban roads at an average speed of 10m/s. 32
repeated traversals of a 9 km route were collected.
Ground-truth poses in SE(2) are available. We select
one sequence lasting 34 minutes and split it into 5
sequences named OR01–OR05 for evaluation.

B. Validation on Good Feature Selection

This section validates that the greedy algorithm selects
a set of valuable features with a large log det Λ(S#K).
Our stochastic-greedy method (label: greedy) is compared
with the fully randomized selection method (label: rnd).
Table I reports the means and standard deviations (std) of
log det Λ(S#K). The values with the full feature set (label:
full) are provided for reference. On OR01–OR02, the greedy
method gains a smaller objective than the rnd method. This is

2https://velodynelidar.com/products/hdl-32e

reasonable since the greedy algorithm cannot always achieve
the best performance according to (5). By considering the std
and the larger means on most sequences, we conclude that
the greedy method outperforms the rnd method.

C. Performance of SLAM

We compare the accuracy, robustness, and latency of M-
LOAM-gf with several baseline methods:
• M-LOAM-rnd is the variant of M-LOAM with the rnd

feature selection module in mapping.
• M-LOAM-full is the original M-LOAM that uses the

full feature set in mapping.
• A-LOAM3, F-LOAM4, and LEGO-LOAM [3] are

three SOTA, open-source L-SLAM systems. All of them
are the improved versions of LOAM [2].

The odometry and mapping of all methods run at 10 Hz
and 5 Hz. For a fair comparison, the loop closure modules in
some baselines are deactivated. The resolutions of the voxel
filter [37] on the edge and planar features are 0.2m and 0.4m.

1) Qualitative Comparison: We first test our method on
RHD sequences. RHD01lab is recorded by moving around
an office space, in which several scenes provide only poor
geometric constraints. Fig. 4(b) indicates two examples.
Scene 1 is a long and narrow corridor, which is a typical
degenerate environment [40]. Scene 2 is an indoor office,
providing well-conditioned constraints. M-LOAM-gf suc-
cessfully tracks robot poses due to its capability in evaluating

3https://github.com/HKUST-Aerial-Robotics/A-LOAM
4https://github.com/wh200720041/floam
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TABLE II
TRANSLATIONAL ATE [39] ON OR SEQUENCES (THE TWO BEST RESULTS ARE MARKED AS BOLD TEXT).

Seq. Dimension M-LOAM-gf M-LOAM-rnd M-LOAM-full A-LOAM F-LOAM LEGO-LOAM

R
M

SE
t
[m

] OR01 525m× 252m 1.986± 0.013 2.324± 0.028 2.449± 0.014 4.504± 0.055 2.174± 0.007 4.334± 0.000

OR02 629m× 431m 2.473± 0.151 3.107± 0.104 3.120± 0.076 7.535± 0.410 3.709± 0.044 4.369± 0.083

OR03 573m× 896m 1.955± 0.105 2.829± 0.158 3.063± 0.062 12.995± 0.006 2.019± 0.024 5.440± 0.102

OR04 337m× 498m 1.720± 0.047 2.242± 0.084 2.239± 0.024 1.913± 0.057 2.238± 0.062 6.224± 0.021

OR05 517m× 968m 1.719± 0.027 2.387± 0.432 2.567± 0.487 6.446± 0.015 2.469± 0.061 7.248± 0.260

Average 1.971 2.578 2.688 6.679 2.522 5.523

the environment’s degeneracy. M-LOAM-rnd has a sudden
drift in scene 1 since using only 20% of features cannot
constrain the poses. A-LOAM also fails because it cannot
model the uncertainty in mapping, which is detailed in [17].
RHD02garden is collected in a garden. Estimated trajectories
and scene images are shown in Fig. 4(c). Since the environ-
ment is well-conditioned, all trajectories are comparative.

2) Localization Accuracy: We then perform a large-scale
outdoor test on OR sequences under 10 repetitions. En-
vironments on OR sequences commonly provide sufficient
features. We visualize M-LOAM-gf’s trajectory against the
ground truth and the built map on OR02 in Fig. 6, and plot
trajectories the other sequences in Fig. 5. Each method is
evaluated the absolute trajectory error (ATE) and the relative
pose error (RPE) [39]. Due to limited space, we report the
translation ATE in Table II, and show complete results in
our supplementary material [35]. M-LOAM-gf does not just
preserve the accuracy of M-LOAM-full, but it also reduces
the ATE on all sequences. The average translation ATE of M-
LOAM-gf is 22% lower than that of F-LOAM (the second-
best method). The feature selection implicitly rejects outliers
(see Section IV-C), which is essential to such accuracy gains.
Thus, M-LOAM-rnd also improves M-LOAM-full. But its
drift is larger than that of M-LOAM-gf. The performance
of the fully randomized operation in M-LOAM-rnd is not
guaranteed, which occasionally lead to inconsistent results.

3) Latency: Experiments in the above sections are con-
ducted on a desktop with an i7 CPU@4.2 GHz and 32 GB
memory. The average latency of mapping of M-LOAM-gf
over 1725 and 10356 frames on the RHD and OR sequences
is 62.69ms and 106.82ms respectively. To demonstrate that
our feature selection method boosts an L-SLAM system on
processors with limited resources, M-LOAM-gf is also tested
on an Intel NUC5 with an i7 CPU@3.1 GHz and 8 GB
memory. The average latency is reported in Table III. We
run the rosbag at a low frequency to ensure no data loss.

First of all, we observe that M-LOAM-rnd has lower
latency than M-LOAM-gf in the GF-based data association.
This is because the rnd is an O(M) algorithm, while the
stochastic-greedy algorithm is O(N log(1/ε)). Second, com-
pared with M-LOAM-full, M-LOAM-gf may need more time
for feature matching but significantly save time in nonlin-
ear optimization. Finally, M-LOAM-gf, M-LOAM-rnd, and
LEGO-LOAM are three real-time systems (< 200ms at

5zh.wikipedia.org/wiki/Next_Unit_of_Computing

TABLE III
AVERAGE LATENCY [MS] OF MAPPING ON AN INTEL NUC.

Seq. Method
Mapping

Data association Optimization Total

RHD

M-LOAM-gf 17.90 3.09 115.48

M-LOAM-rnd 6.33 3.65 92.57

M-LOAM-full 16.17 7.01 128.32

A-LOAM − − 131.08

OR

M-LOAM-gf 46.18 4.64 149.25

M-LOAM-rnd 21.70 6.86 108.10

M-LOAM-full 54.35 22.85 230.35

A-LOAM − − 313.69

F-LOAM − − 271.30

LEGO-LOAM − − 158.23

Latency: Time delay between the input and output of a function.

each mapping frame) for the Intel NUC. Both M-LOAM-
gf and M-LOAM-rnd outperform LEGO-LOAM in terms
of accuracy. LEGO-LOAM implicitly performs feature se-
lection since it filters out points if the distances to their
correspondences are larger than a threshold. But this naive
and hard-coded solution leads to large accuracy loss.

VII. CONCLUSION

In this paper, we propose a greedy-based feature selection
method for NLS pose estimation using LiDARs. The feature
selector retains the most valuable LiDAR features with the
objective of preserving the information matrix’s spectrum.
The stochastic-greedy algorithm is applied for the real-time
selection. Moreover, we also investigate the degeneracy issue
of utilizing good features for pose estimation in structureless
environments. We propose a strategy to adaptively change the
number of good features to avoid ill-conditioned estimation.
The feature selection is integrated into a multi-LiDAR SLAM
system, followed by evaluation on sequences with two sensor
setups and computation platforms. The enhanced system
is shown to have great efficiency and higher localization
accuracy than SOTA methods. The idea of feature selection
is general and can be applied to many NLS problems.

Future work will concern two possible directions. The first
direction is to utilize data-driven methods [41] to online tune
parameters which were mannually set. Another direction is
to apply the proposed feature selection to other tasks, such
as bundle adjustment [42] and cross-model localization [43].
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