
S
ince early 2020, COVID-19 has spread rapidly 
across the world. At the date of this writing, the 
disease has been globally reported in 220 countries 
and regions, infected more than 68 million people, 
and caused more than 1.5 million deaths (see 

https://covid19.who.int/) for up-to-date statistics. Avoiding 
person-to-person transmission is an effective approach to 
control and prevent the pandemic. However, many daily 
activities, such as transporting goods in our daily life, 
inevitably involve person-to-person contact. 

Using an autonomous logistic vehicle to achieve contact-
less goods transportation could alleviate this issue. For 
example, it can reduce the risk of virus transmission 
between the driver and customers. Moreover, many coun-
tries have imposed tough lockdown measures to reduce 

virus transmission (e.g., retail and catering) during the pan-
demic, which causes inconveniences for daily human life. 
Autonomous vehicles can deliver the goods purchased by 
humans so that they can receive these without going out. 
Such demands motivated us to develop an autonomous 
vehicle, Hercules, for contactless goods transportation 
during the COVID-19 pandemic. The vehicle is evalu-
ated through real-world delivery tasks under various 
traffic conditions.

There exist many studies related to autonomous vehi-
cles; however, most focus on the specific modules of auton-
omous driving systems. For example, Sadigh et al. 
[1] developed a planning method that models the interac-
tion with other vehicles. Koopman et al. [2] presented a 
testing paradigm for autonomous vehicles. Some research-
ers have tried to construct complete autonomous driving 
systems [3]. Compared with these studies, we built a com-
plete system and added several new modules, such as the 
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cloud server module. We also made some adjustments in 
our solution, such as considering novel dynamic con-
straints, to make the vehicle more suitable for contact-
less goods transportation (Figure 1). In this article, we 
provide details on the hardware and software as well as 
the algorithms to achieve autonomous navigation, 
including perception, planning, and control. This article 
is accompanied by a demonstration video and a data set, 
which are available at https://sites.google.com/view/ 
hercules-vehicle.

The Hardware System
The hardware system of our vehicle mainly consists of a fully 
functional drive-by-wire (DBW) chassis and autonomous 
driving-related devices. Figure 2 depicts the sensors and the 
3D model of our vehicle.

A Fully Functional DBW Chassis
To achieve autonomous driving, the first task is to equip a 
vehicle with full DBW capability. Our DBW chassis can be 
divided into four parts: 1) motion control, 2) electronic acces-
sories control, 3) basic sensors, and 4) system control. The 
motion control module includes the motor control unit 
(MCU), electric power steering (EPS), electrohydraulic brake 
(EHB), and electronic parking brake (EPB). The MCU sup-
ports both the speed control and torque control. The EPS 
controls the steering angle and speed of the vehicle. The com-
bination of the MCU and EPS controls the longitudinal and 
lateral motions, while the EHB controls the brake, and the 
EPB controls the parking brake. 

The electronic accessories control module includes 
some basic electronic accessories such as the vehicle’s 
lights and horns, which are controlled by the body control 
module (BCM). In the basic sensors module, our chassis is 
equipped with some basic sensors, such as a bumper, 
wheel encoder, and tire pressure monitoring system 
(TPMS). The bumper and TPMS are both safety-critical 
sensors. Specifically, the bumper is used to detect colli-
sions and is the last defense to prevent further damage 
when accidents occur. In the system control module, the 
chassis system is controlled and managed via the vehicle 
control unit (VCU), which is responsible for coordinating 
each module. This unit keeps communicating with the 
industrial personal computer (IPC), performing parame-
ter checking and sending commands to other modules. In 
addition, the VCU is responsible for critical safety func-
tions, such as the stopping signal from the emergency but-
ton. In our chassis, the VCU and BCM are implemented 
on one device.

There are two batteries in our vehicle, a 12-V lead–acid 
starter battery and a 72-V removable lithium-ion battery, 
which can support a maximum 80-km running distance. The 
lithium-ion battery powers the chassis, IPC, sensors, and 
accessories. It has a built-in battery management system to 
monitor and manage the battery. The removable design 
allows the vehicle to operate 24 h/day without stopping for a 

recharge. An onboard charger with a dc–dc converter takes 
about 5 h to fully charge the battery.

Autonomous Driving-Related Devices
The devices related to autonomous driving include the 1) 
computation platform, 2) sensors, and 3) auxiliary devic-
es. For the computation platform, our vehicle is equipped 
with an IPC that has an Intel i7-8700 CPU with six cores and 
12 threads, 32-GB memory, and a 1050Ti NVIDIA graphics 
card. It is able to run deep 
learning-based algorithms. 
In terms of sensors, as 
illustrated in Figure 2(a), 
our vehicle is equipped 
with four 16-beam lidars, 
one microelectromechani-
cal system short-range 
lidar, four fish-eye camer-
as, 16 ultrasonic radars, 
one inertial measure-
ment unit (IMU), and one high-precision global navi-
gation satellite system (GNSS) that supports real-time 
kinematic positioning and heading vector positioning. 
The auxiliary devices include a 4G/5G data transfer 
unit (DTU), a human–machine interface, an LED dis-
play, and a remote controller. The DTU allows the IPC 
to be connected to our cloud management platform via 
the Internet. The LED display is programmable and 
can be controlled by the IPC. Hence, it can interact 
with other traffic participants like pedestrians and 
human drivers. Also, it can be used for advertisement. 
The remote controller is necessary in the current stage 
to ensure safety.

The Software System
Figure 3 portrays the software architecture of our autono-
mous vehicle. It can be generally divided into two parts: the 

Figure 1. A worker dressed in a protective suit collects goods 
from our Hercules logistic autonomous vehicle. There is 
no person-to-person contact during the process of goods 
transportation. This photo was taken in Shenzhen, Guangdong, 
China, February 2020, during the COVID-19 pandemic. 

Avoiding person-to-person 

transmission is an effective 

approach to control and 

prevent the pandemic.
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software system running on the vehicle and the software 
system running on the cloud.

The Software System on the Vehicle
There are three main computing platforms on the vehicle: 
the IPC, electronic control unit (ECU), and BCM. The 
IPC is used to run algorithms for autonomous naviga-
tion. The ECU is used to ensure the safety of the vehicle 
through energy management and safety diagnosis. The 
applications on the ECU run on the real-time operating 
system (RTOS), which satisfies the real-time require-
ments. The BCM connects the IPC and ECU. It also runs 
on the RTOS, which meets the real-time requirements. It 
detects the communication between the nodes of the 
controller area network (CAN) by heartbeat protocols. 
When the major nodes of this network experience an 
outage or crash, the BCM stops transmitting high-level 
CAN signals from the IPC to the VCU and waits for 
human intervention.

The sensors on the vehicle are synchronized by a 1-Hz 
pulse per second (PPS) signal from the external GNSS 
receiver. The IPC receives data from the sensors and 
uses them at different frequencies. For example, the state 
estimation module updates at 100 Hz, providing real-
time-enough position feedback for the control system. 
This is achieved by fusing lidar measurements with 
other high-frequency sensors, e.g., the IMU or wheeled 
odometer. The lidar object detection module runs at 10 Hz 
according to the refresh rate of the lidar. All of the mod-
ules are developed on the Robot Operating System 
(ROS) to facilitate data communication.

The Software System on the Cloud
The software system on the cloud mainly includes the map 
server, the scheduling server, and the log and simulation 
server. The map server stores prebuilt maps. The sched-
uling server performs the task allocations and collects 
the status of every registered running vehicle. It also 

plays the role of accessing the map 
data for routing, transmitting sen-
sor data into the map server, record-
ing the key information into the 
log server, and replaying the data 
recorded for good traceback. The 
log and simulation ser ver run 
the end-to-end simulator Carla 
and the 51Sim-One. The clock syn-
chronization between the plat-
forms on the vehicle and cloud is 
manipulated based on the network 
time through the network time 
protocol (NTP).

Perception
Perception serves as the fundamen-
tal component of autonomous na -
vigation. It provides the necessary 
information for planning and con-
trol. This section describes two key 
perception technologies used in 
our vehicle: multiple lidar-based 
3D object detection and 3D point-
cloud mapping. 

Multiple Lidar-Based 3D  
Object Detection
3D object detection aims to recognize 
and classify objects as well as estimate 
their poses with respect to a specific 
coordinate system. We used multiple 
lidars for object detection. The first 
step was to calibrate the lidars. In 
this work, we proposed a marker-
based approach [5] for automatic 
calibration without any additional 
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Figure 2. The sensors used in our vehicle and the modules in the chassis. Note that the cargo 
box is replaceable, but it is not shown in the figure. (a) The sensors on the vehicle (with the 
cargo box removed). (b) The sensors and control units on the mobile base (chassis). OBC: 
on-board charger. 
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sensors or human intervention. We assumed that three 
linearly independent planar surfaces forming a wall cor-
ner shape are provided as the calibration targets, ensur-
ing that the geometric constraints are sufficient to 
calibrate each pair of lidars. Af  ter matching the corre-
sponding planar surfaces, our method successfully recov-
ered the unknown extrinsic parameters with two steps: a 
closed-form solution for initialization based on the Kabsch 
algorithm [6] and a plane-to-plane iterative closest point 
for refinement. 

The overview of our 3D object detection is depicted in 
Figure 4. The inputs to our approach are multiple point 
clouds captured by different lidars. We adopted an early 
fusion scheme to fuse the data from multiple calibrated 
lidars at the input stage. With the assumption that the 
lidars are synchronized, we transformed the raw point 
clouds captured by all of the lidars into the base frame 
and then fed the fused point clouds into the 3D object 
detector [4]. The final output was a series of 3D bound-
ing boxes.

3D Point-Cloud Mapping
3D point-cloud mapping aims to build a 3D map of the 
traversed environments. Figure 5 illustrates the diagram 
of our mapping system. The inputs to the system are the 
raw data from the IMU and 3D lidar (i.e., accelerometer 
and gyroscope readings from the IMU and point clouds 
from the 3D lidar). The system starts with an adapted 
initialization procedure followed by two major submod-
ules: lidar inertial odometry and rotationally con-
strained mapping. Since the vehicle usually remains still 
at the beginning of mapping, we do not need to excite 
the IMU to initialize the module as described in [7], 
which is more suitable for handheld applications. With 
the stationary IMU readings, the initial orientation for 
the first body frame can be obtained by aligning the 
average of the IMU accelerations to the opposite of the 
gravity direction in the world frame. The initial velocity 
and IMU biases are set to zero. Then, the lidar inertial 
odometry optimally fuses the lidar and IMU measure-
ments in a local window. The mapping with rotational 
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Figure 4. An overview of the 3D object detection module. The inputs are multiple point clouds captured by synchronized and well-
calibrated lidars. We used an early fusion scheme to fuse the data from multiple calibrated lidars and adopted the VoxelNet [4] to 
detect 3D objects from the fusion results.
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Figure 5. The schematic diagram of our 3D point-cloud mapping system. After the initialization, the system estimates the states and 
refines the global map and lidar poses in, respectively. The odometry and mapping submodules.
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constraints further refines the lidar poses and the point-
cloud map.

Planning
Planning enables autonomous vehicles to acquire future 
paths or motions toward the destination. Planning for 
autonomous driving is challenging because traffic envi-
ronments usually include dynamic objects, bringing about 
risks and uncertainties [8]. Autonomous vehicles are 
required to interact with various road participants, such 
as  cars, motorcycles, bicycles, pedestrians, and so on. The 
planner needs to meet the vital requirements of safety and 
the kinematic and dynamic constraints of vehicles as well 
as the traffic rules. To satisfy these requirements, our 
planning is hierarchically divided into four layers: route 
planning, behavioral planning, local path planning, and 
motion planning. Figure 6 displays the four-layer plan-
ning process.

Route Planning
Route planning aims at finding the global path from the 
global map. For autonomous driving, the route planner 
typically plans a route given a road network. For struc-
tured environments with clear road maps, we used a path 
planning algorithm to find the route by establishing the 
topological graph.  However, driveways in industrial parks 
or residential areas are often not registered in the road 
net. Furthermore, some of the traversable areas in these 
places are unstructured and not clearly defined. We 
employed experienced drivers as teachers to demon-
strate reference routes in these places. Figure 7  illustrates 
the global routes in the road network, with arrows indi-
cating the forward directions.

Behavioral Planning
Behavioral planning determines the maneuvers for local 
navigation. It is a high-level representation of a sequence 
of vehicle motions. Typical maneuvers are lane keeping 
and overtaking. This layer receives information from the 
global maps and finds the category of the local area to give 
specifications on path planning. For example, unstruc-
tured environments, like parking lots, have different 
requirements for planning. Given the road map and the 
localization of the ego vehicle, features of the local area can 
be obtained. As seen in Figure 6, road information that 
indicates the road environment classification of the global 
path segments is helpful for behavioral planning. Further-
more, traffic information from traffic signs helps in mak-
ing decisions. The road and traffic information, together 
with the estimation of other moving agents, allows the 
behavioral planner to follow or overtake the front car or 
pull over the ego vehicle.

Local Path Planning
Local path planning generates a geometric path from the 
starting pose to the goal pose for the vehicle to follow. The 
time complexity of this process increases with increased 
path length, so it is often limited to a local range to ensure 
real-time planning. The local path planner needs to tackle 
the motion constraints of the vehicle to generate collision-
free paths that conform to the lane boundaries and traffic 
rules. Figure 6 displays the online local path planning for 
driving on standard roads. Here, we planned the path in 
the Frenet coordinate system. With the global path as the 
reference path, it defines the lateral shift to the path and 
the distance traveled along the path from the start posi-
tion. We drew multiple samples with different speeds and 
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Figure 6. The schematic diagram illustrating the planning for our autonomous vehicle. The planning process consists of four layers: 
route planning, behavioral planning, path planning, and motion planning. The four layers are colored in pink.
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Figure 7. Selected task routes and demonstration photos. The first column includes three representative routes: (a) a 9.6-km route in 
Zibo, Shandong, for vegetable delivery; (f) a 1.2-km route in Suzhou, Jiangsu, for lunch meal delivery; and (i) a 1.6-km route in Shenzhen, 
Guangdong, for lunch meal delivery. Photos taken in Zibo, Shandong: (b) starting from the logistics company, (c) crossing the gate of the 
logistics company, and (d) and (e) on urban main roads. Photos taken in Suzhou, Jiangsu, (g) a left turn, and (h) spraying disinfectant in 
a residential area. Photos taken in Shenzhen, Guangdong, (j) a heavy traffic environment, (k) surrounded by road users and meeting with 
oncoming cars, (l) a U-turn on a narrow road, (m) a traffic light at night, and (n) a contactless interaction while picking up a meal. 
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lateral offsets. Then a graph search method was adopted to 
search the path with the minimum cost. To define the cost 
of the coordinates of each curve, we took into consideration 
the quality of the curve, ending offset to the global path, and 
other factors (e.g., the potential trajectories of other agents).

Motion Planning
Given the planned path, motion planning is the final layer 
that optimizes the trajectory with dynamic constraints from 
the vehicle (i.e., the requirements for comfort and energy 
consumption). The planned trajectory specifies the velocity 
and acceleration of the vehicle at different time stamps, so it 
is also called trajectory planning. Though the path planned in 
the Frenet frame contains speed information, the dynamic 
constraint of the vehicle is not yet considered. Besides this, 
the local planning process is time-consuming and has a low 
update rate, which is inadequate to handle dynamic obsta-
cles and emergency cases. The motion planner optimizes 
the trajectory given the information of obstacles, the con-
straints from the vehicle, and the path from the local path 
planner. It outputs the final trajectories for the controller to 
follow at a much higher updating rate to ensure safety.

Control
The main task of vehicle control is to track the planned trajec-
tory. In the past decade, many trajectory tracking controllers 
have been developed, among which the model predictive con-
troller (MPC) [9] is the most popular. The schematic diagram 
of our controller is displayed in Figure 8. 

As we can see, there are two inputs to the trajectory tracking 
controller. One is the trajectory x(t), which includes the 
information (e.g., desired coordinates, curvatures, and 
speed) from the motion planner; the other is the feedback 
information ( )x tl  from the state estimator. Sometimes, sen-
sor feedback from the chassis cannot be directly sent to the 
controller, or more feedback quantities are required by the 
controller, which are difficult to obtain from sensors. In 
such cases, a state feedback estimator is required but not a 
must. In Figure 8, the output of the trajectory tracking con-
troller u(t) is sent to the chassis after being processed by a 
lower controller. The lower controller can work for many 
purposes. For example, our autonomous vehicle can work in 
both the autonomous driving mode and the parallel driving 
mode (i.e., the remote control mode). The trajectory tracking 
controller functions only in the autonomous driving mode, 
which means that only in this mode does the lower control-
ler take u(t) as input.  

Vehicle control can be divided into lateral control, which 
controls steer angles, and longitudinal control, which con-
trols the car speed. There are two types of MPCs in the area 
of the autonomous vehicle. One is kinematics-based while 
the other is dynamics-based. The kinematics-based MPC is 
a combined controller that integrates the lateral control and 
longitudinal control. Therefore, the longitudinal propor-
tional-integral-derivative (PID) controller highlighted in 
a dashed box in Figure 8 may be not required. The vector 
of two control quantities u(t) (i.e., the steer angle and 
speed) will be directly given by the MPC. However, the 
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Figure 8. The schematic diagram of our controller. The main component is the trajectory tracking controller.
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dynamics-based MPC is a standalone lateral controller, 
where the output is a control quantity of the steering angle. 
In such a case, a longitudinal PID controller that outputs 
the speed control quantity will be required. And the out-
puts of these two controllers constitute u(t).

Evaluation
This section describes the real tasks of contactless goods 
transportation using our vehicle during the COVID-19 pan-
demic in China. From 2 February to 27 May 2020, we 
deployed 25 vehicles in three different cities (Zibo, Shan-
dong; Suzhou, Jiangsu; and Shenzhen, Guangdong) in 
China. Our current server can handle 200 vehicles simulta-
neously. The total running distance of each vehicle reached 
2,500 km. The details of the transportation tasks are summa-

rized in Table 1. Se  lected 
demonstration photos of 
the tasks are displayed 
in Figure 7. 

Note that, in the case 
of failure during autono-
mous navigation, such as 
unavoidable accidents 
and system errors, we 
built a parallel driving sys-
tem to back up our vehi-
cle control. The parallel 
driving system is a remote 
control system based on 
4G/5G technology. When 

using 4G with a good signal, the latency is usually between 30 
and 60 ms. We set the system to automatically adjust the bit 
rate to ensure that the vehicle is not out of line. When using 
5G, the latency can be fewer than 20 ms. If the vehicle is out of 
line, it will stop immediately. 

We tested the function with several vehicles on several 
real road environments, and the experimental results 
indicate that the function works well. Vehicle control is 

immediately taken over by a human driver in the case of 
any failure for autonomous navigation. We expect less 
human intervention during our goods transportation 
tasks. The performance was evaluated according to the 
number of occurrences of human interventions.

Lessons Learned and Conclusions
For object detection, we found that, in practice, real-time per-
formance deserves much more attention than accuracy. The 
perception algorithms should be efficient since they lie in the 
front end of the whole autonomous navigation system. There-
fore, we replaced the dense convolution layers with spatially 
sparse convolution in our 3D object detection module. As a 
result, the inference time was boosted from approximately 
250 to 56 ms.

For the point-cloud mapping, we found that our system 
was capable of dealing with the rapid motion of the vehicle 
and short-term point-cloud occlusions. Since most of the 
lidars are mounted parallel to the ground and the vehicles 
always move along the ground, the typical ring structure 
of the point clouds makes the system difficult to observe 
in terms of translational movements vertical to the 
ground plane. Drift in this direction is inevitable during 
long-term operations. In practice, we learned that the 
GPS localization results signaled the potential loop, lead-
ing to a consistent larger-region map for the lidar-based 
localization. In very crowded dynamic traffic environ-
ments, the system could be degraded by disturbances 
from moving objects [10]. To tackle this issue, we used 
semantic segmentation to remove movable objects to 
obtain clear point-cloud data.

For the planning part, we found that four-layer hierar-
chical planning is necessary and effective. The working 
environments of our vehicles are complex in terms of 
road structures, traffic conditions, driving etiquette, and 
so on. Layer-wise planning makes the system extensible 
for multiple environments and various requirements. 
Furthermore, it is essential to attach importance to the 

Table 1. Details of the contactless goods transportation tasks during the COVID-19 pandemic in China.

City Task Distance
Time  
Duration Payload Environments Characteristics 

Zibo, Shandong Vegetable delivery 9.6 km 75 min 600 kg Urban main road Light traffic, heavy payload, 
and slow speed 

Vegetable delivery 5.4 km 50 min 960 kg Urban main road  
and residential area

Light traffic, heavy payload, 
and slow speed 

Suzhou, Jiangsu Meal delivery 1.2 km 30 min 80 kg (100 boxes  
of meals)

Urban main road Medium traffic, left turn, 
and U-turn 

Road disinfection 0.6 km 10 min — Residential area Narrow road, crowded, 
obstacle, and slow speed

Shenzhen,  
Guangdong

Meal delivery 1.6 km 20 min 64 kg (80 boxes  
of meals) 

Urban main road  
and residential area

Heavy traffic, narrow road, 
and U-turn 

Meal delivery 4.0 km 40 min 96 kg (120 boxes  
of meals)

Urban main road  
and residential area

Heavy traffic, narrow road, 
and U-turn 

Our DBW chassis can be 

divided into four parts: 

1) motion control, 2) 

electronic accessories 

control, 3) basic sensors, 

and 4) system control.
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uncertainty from the perception modules. This uncer-
tainty comes from the limited accuracy of the perception 
system as well as the time delay in processing. For the 
planning, we avoided hitting the critical conditions and 
left safe distances for the planned trajectory.

For the control part, we found that the greatest advan-
tage of using an MPC can be gained by adding multiple 
constraints in the control process. When the vehicle oper-
ates at low speed, the kinematic constraints restrain the 
vehicle motion planning and control. But, with the incre-
ment of speed, dynamic characteristics become more 
influential. As mentioned previously, the dynamic-based 
MPC is much more accurate than the kinematic-based 
MPC since the predictive model is more accurate. Howev-
er, we found that complex model prediction was not the 
best option. With regards to low- and middle-speed oper-
ation environments, a simplified predictive model with 
multiple constraints would be sufficient.

From our real-life operations, we found that more con-
servative settings for obstacle detection could lead to 
more false positives. This would decrease the speed or 
even freeze the vehicle and hence cause traffic jams. On 
some roads, the minimum allowed speed is not indicated, 
so we need to maintain a vehicle speed that is not too slow 
in order not to cause annoyance for other vehicle drivers. 
A clearly and easily identified human–machine interface 
is also important. It can be used to inform other vehicle 
drivers in advance what the autonomous vehicle will do. 
Otherwise, the other vehicle drivers could feel frightened 
because they might not be able to anticipate the behaviors 
of the autonomous vehicle. For example, our vehicle often 
startled other vehicle drivers when it was reversing, even 
when the reversing light was flashing. Using a screen to 
notify the reversing behavior could alleviate the issue. In 
some cases, not strictly obeying the traffic rules would be 
good for autonomous navigation. For example, it would 
be wise to change lanes when a traffic accident happens 
ahead in the ego lane, even if the lane changing behavior 
is not allowed according to the traffic rules. Otherwise, 
the vehicle would not be able to move forward.

The successful daily operations demonstrated that using 
our autonomous logistic vehicle could effectively avoid 
virus spread due to human contact. It effectively builds a 
virtual wall between the recipient and sender during goods 
transportation. For quantitative measures, we can compute 
from Table 1 that the average distance for each task per 
vehicle is ( . . . . . . ) / . .9 6 5 4 1 2 0 6 1 6 4 0 6 3 7 km.+ + + + +  
As the total running distance is 2,500 km, the number of 
tasks is , / . .2 500 3 7 676.  According to our observation, 
there are usually four instances of person-to-person con-
tact in each task of traditional goods transportation. So the 
number of avoided contacts would be , .4 676 2 704# =  As 
we have 25 running vehicles, the total number of avoided 
contacts would be , .,25 2 704 67 600# =  Currently, there 
is a huge demand for contactless goods transportation in 
many infected areas. We believe that continuous long-term 

operations could extensively improve our vehicle and 
enhance the maturity of our technologies.
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