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Abstract— In autonomous vehicles or robots, point clouds
from LiDAR can provide accurate depth information of objects
compared with 2D images, but they also suffer a large volume
of data, which is inconvenient for data storage or transmission.
In this paper, we propose a Range image-based Point Cloud
Compression method, R-PCC, which can reconstruct the point
cloud with uniform or non-uniform accuracy loss. We segment
the original large-scale point cloud into small and compact
regions for spatial redundancy and salient region classification.
Our range image-based method can keep and align all points
from the original point cloud in the reconstructed point cloud,
and the setting of the quantization module restricts the max-
imum reconstruction error. In the experiments, we prove that
our easier FPS-based segmentation method can achieve better
performance than instance-based segmentation methods such
as DBSCAN, and our non-uniform compression framework
shows a great improvement on the downstream tasks compared
with the state-of-the-art large-scale point cloud compression
methods. Our real-time method can achieve 40× compression
ratio without affecting downstream tasks, to act as a baseline
for range image-based point cloud compression. The code is
available on https://github.com/StevenWang30/R-PCC.git.

I. INTRODUCTION

Point clouds from scanning LiDAR can not only provide
high-accuracy depth information of objects in a large range,
but are also suitable for diverse environments like various
lighting conditions. However, the large-volume data stream
obtained by the LiDAR will lead to problems in practical
use, such as storage or transmission. Take Velodyne-64E for
example. It will collect 30GB+ of point cloud data per hour.
Therefore, large-scale point cloud compression has become
necessary for autonomous driving systems.

Point clouds used in 3D scanning or modeling are very
compact and dense. In recent decades, many 3D point cloud
compression methods have proposed to compress this type of
point cloud, by voxelization [1], [2] or 3D mesh compression
[3]. The point cloud compression ratio will increase when
the point cloud becomes denser. This is because from the
feature aspect, denser points provide more accurate normal
information and context features. And from the entropy
aspect, the entropy of the point cloud is smaller when the
probability of the position of each point is higher. However,
compared with the 3D models, point clouds from scanning
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LiDAR in outdoor scenarios are commonly scattered through
regions up to 100 meters away. Thus the compact models can
not perform well in the large-scale point cloud compression
in the autonomous driving systems.

Tree-based [4]–[6] and range image-based algorithms [7]–
[9] are two kinds of effective compression types. Among
tree-based methods, in Draco [4], a mesh and KD-tree are
fed into the algorithm for compression, while in [10], Huang
et al. firstly reorganized the point cloud into an octree, and
used a machine learning model to predict the probability
of each voxel, which can be fed into the arithmetic coding
algorithm for end-to-end compression. Meanwhile, range
images are the 2D depth images of 3D point clouds from
the frontal view, and an unsynchronized and unrectified point
cloud will be directly backprojected by the range image
stream collected by LiDAR. Image compression methods,
such as JPEG [11] and JPEG2000 [12], can be applied
to range image compression, such as JPEG or JPEG2000.
Compared with the octree-based or KD-tree-based methods,
range image-based compression framework can guarantee
the number of points in the reconstructed point cloud is
exactly the same as that in the original point cloud. Because
range image has geometry clusters and larger range of values
compared with ordinary image from camera, Sun et al. [8]
proposed an instance-based segmentation method that uses
Euclidean clustering to reduce the spatial redundancy, and
achieved 20× compression ratio. However, the instance-
based or semantic-based segmentation has high time and
space complexity for real-time implementation. In this paper,
we propose a region-based method using farthest point
sampling (FPS). In Sec. IV-C, we compare the compression
ratio and reconstruction quality of instance-based and region-
based segmentation methods, and the results illustrate that se-
mantic and accurate segmentation cannot improve the overall
compression performance, while our uniform compression
framework can achieve 30× compression ratio with 2cm
chamfer distance error.

Another reason to segment a large-scale point cloud into
small regions is that we can decrease the compressed bit-
stream size without affecting downstream tasks by retaining
high compression accuracy in important regions and reducing
the compression accuracy in unimportant areas. Our non-
uniform compression framework uses a key point extractor
to classify the clusters into four salience levels. The exper-
imental results for 3D object detection and simultaneous
localization and mapping (SLAM) on the KITTI dataset
show that our method can achieve a higher compression
ratio with less decrease in downstream task performance than
other baseline methods.



The contributions of this work are listed as follows:
• We propose the more efficient and effective FPS seg-

mentation and point-plane mixing modeling method,
which can help to achieve better compression ratio by
reordering the residual ranges and distributions.

• We propose a uniform and non-uniform compression
framework for different requirements. Salient regions
with more key points can keep high reconstruction
quality for downstream tasks.

• We compare our compression framework with other
state-of-the-art algorithms, and achieve superior perfor-
mance in both reconstruction quality and downstream
task performance. Our real-time framework can become
a novel range image-based point cloud compression
baseline as the front-end in autonomous driving system.

II. RELATED WORKS

A. Single-frame Point Cloud Compression

For static unstructured point clouds, octree representation
is commonly utilized as a point-cloud geometry compression
method. Elseberg et al. [13] proposed an efficient octree data
structure to store and compress 3D data without loss of pre-
cision. Experimental results demonstrated that their method
was useful for the exchange file format, fast point cloud
visualization, fast 3D scan matching, and shape detection. De
Oliveira Renteet et al. [14] introduced a graph-based lossy
coding algorithm for the geometry of static point clouds.
They used an octree-based technique for the base layer and a
graph-based transform technique for the enhancement layer,
where a residual was coded, leading to impressive coding
performance. Zhang et al. [15] introduced a clustering and
DCT-based color point cloud compression method, in which
they used a mean-shift technique to cluster 3D color point
clouds into many homogeneous blocks, and a clustering-
based prediction method to remove spatial redundancy of
the point cloud data. Meanwhile, Tang et al. [16] presented
an octree-based scattered point cloud compression algorithm,
in which the stop condition of segmentation was improved
to ensure appropriate voxel size. Additionally, the spatial
redundancy and outliers could be removed by traversal
queries and bit manipulation.

For static structured point clouds, researchers have focused
on employing existing image coders to encode point cloud
data by mapping them into 2D arrangements. Houshiar et
al. [17] proposed to project 3D points onto three panorama
images and used an image coding method to compress them.
Similar to their approach, Ahn et al. [18] presented an adap-
tive range image compression algorithm for the geometry
information of large-scale 3D point clouds. They explored
a prediction method to predict the radial distance of each
pixel using previously encoded neighbors and only encoded
the resulting prediction residuals. In contrast, Zanuttigh et al.
[19] focused on efficient compression of RGB-D point cloud
data. They developed a segmentation method to identify
the edges and main objects of a depth map. After that,
an efficient prediction process was performed according to

the segmentation result, and the residual data between the
predicted and real depth map were calculated. Finally, the
few prediction residuals were encoded by conventional image
compression methods. Sun et al. [7]–[9] also proposed a
cluster-based method for range images to reduce the residual
data range and the entropy of the residual data. However, the
ablation and comparative results in this paper shows that the
accurate segment methods like DBSCAN for semantic or
instance-based segmentation did not show improvement in
the overall compression ratio. In our method, we utilize the
segmentation results for salience map creation, and we apply
a non-uniform framework to achieve a higher compression
ratio without a negative effect on the downstream tasks.

B. Key Point Extraction

For most downstream tasks in autonomous driving sys-
tems, the feature extraction of the point cloud is crucial.
Feature-based methods focus on the sharp features for edges
or flat features for surface matching. LOAM [20] is the
standard framework of many current SLAM-related methods
like LeGO-LOAM [21] or M-LOAM [22]. LOAM splits each
scan in the range image into several segments, and finds the
top K sharpest and flattest points in the segments as the key
points. The more violent the depth change in the adjacent
pixels in the same scan, the sharper the edge features. Serafin
et al. [23] proposed a fast and robust 3D feature extraction
method in sparse point clouds, which can extract the planes
and edges. In our key point extraction module, we utilize the
feature extractor in LOAM [20] and evaluate A-LOAM’s [24]
performance (an open-source implementation of LOAM) the
SLAM downstream tasks in the comparative experiments.

III. METHODOLOGY

A. System Overview

Our proposed uniform or non-uniform point cloud com-
pression framework R-PCC is shown in Fig. 1. The de-
compression part of our framework uses the same basic
compressor as in the compression framework, to decompress
the segmentation and modeling information data (info. data)
and quantized residual data. The info. data can predict the
coarse point clouds as in the compression framework, and
the residual is recovered by the inverse quantization module.
In the non-uniform framework, the accuracy for each cluster
corresponds to the quantization module in compression.

Our proposed compression framework is based on the
range image. Note that if the range image is collected from
the LiDAR, then the number of points is also the same as in
the point cloud; and if the range image is projected by the
3D point cloud, the number of points in the reconstructed
point cloud depends on the shape of the range image.

The accuracy loss thus consists of two parts:
1) The projection from the point cloud to the range image.
2) The uniform or non-uniform quantization accuracy.

B. Range Image

Currently, single-frame point clouds from most LiDARs
can be projected from 3D to 2D. A LiDAR has different
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Fig. 1: Block diagram of our uniform and non-uniform compression framework, R-PCC. In the non-uniform quantization
module, the residual is quantized by different quantization accuracies in each cluster based on the key point distribution.
The green block is the bitstream for storage or transmission, two black blocks are the information data and the quantized
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Fig. 2: Example of the point modeling and plane modeling
method. The blue points are intra-predicted result using point
model or plane model. The residual of point A is OA - OA’.

laser beams (e.g. Velodyne HDL-64E has 64 lasers, and 32E
has 32 lasers), and all the lasers have a full rotation of 360◦

along the azimuth direction (horizontal field of view).
Here we take the Velodyne HDL-64E as an example.

In the vertical field of view, the range image consists of
64 rows whose angles are distributed between the lowest
angle ϕmin and highest angle ϕmax. Each scan in the range
image represents a fixed angle. If the LiDAR has H lasers,
and the horizontal angular resolution is ρ , the shape of the
range image collected by the LiDAR should be [H,W ] =
[H,b360/ρe], where be represents the rounding operation.

We can project a 3D point P = (x,y,z) onto the corre-
sponding 2D pixel I = (w,h,r) of a range image, where
w and h are the vertical index and horizontal index, and
r is the Euclidean distance from the point to the LiDAR
origin. Values of (w,h,r) are calculated accordingly. r =√

x2 + y2 + z2, h = bθ/ρe, and w = b(ϕ −ϕmin)/σe, where
θ = arctan(y/x) and ϕ = arctan(z/r) are the horizontal angle
and vertical angle respectively, ϕmin is the smallest vertical
angle, and σ =W/(ϕmax−ϕmin).

C. Compression Framework

Ground Extraction Module. The ground points have
strong regularity because the ground points can be fitted
into a large plane. We estimate the ground model using the
RANSAC planer fitting method like [8].

Segmentation Module. This module segments the point
cloud into several denser point cloud subsets. Compared with
the instance-based segmentation methods in [7] and [8], we
choose FPS method to find the center of each cluster as
region-based segmentation method. The number of clusters
is equal to the number of sampled points setting in FPS. In
the Sec. IV-C, we compared the DBSCAN as baseline with

ours segmentation method, and the results shows that ours
method performs better in compression and efficiency.

Modeling Module. After obtaining the small point cloud
clusters, we use two methods, point and plane, to model the
points in each cluster. Different modeling methods vary the
different residual distribution, and more regular distribution
can obtain higher compression ratio. When a cluster is
compact, we tend to choose point modeling, and when a
cluster has plane surface, the plane modeling is better. The
point modeling method uses the mean of the points’ depth,
and the plane modeling method uses a plane, which is
estimated by RANSAC, to represent points in each cluster.
When the number of points in the cluster is smaller than 30,
or the maximum angle between the plane norm and LiDAR
scans in this cluster is larger than 75◦, we will choose the
point modeling method.

For a point set {Pi = (xi,yi,zi)}k
i=1 in the cluster, the point

model: r = 1
k ∑ ||Pi||2, and the plane model ax+by+cy+d =

0, where {r} and {a,b,c,d} are the model parameters.
Intra-prediction Module. An example of the intra-

prediction result of the plane modeling and the point model-
ing method for a car on the KITTI dataset is shown in Fig. 2.
We can predict the whole point cloud with the segmentation
info. data and the model parameters. For a point in the
predicted range image Î = (w,h, r̂) and its model parameters,
we want to predict r̂. Its 3D location P̂ = (cosϕ · cosθ ·
r̂,cosϕ · sinθ · r̂,sinϕ · r̂), where the calculation of ϕ and
θ is in Sec. III-B. When the point is modeled by a point
model {r}, then r̂ = r; if the point is modeled by a plane
model {a,b,c,d}, and from the plane model equation, we
can calculate the predicted r̂:

r̂ =−d/(a · cosϕ · cosθ +b · cosϕ · sinθ + c · sinϕ). (1)

Key Point Extractor and Salience Map. This module
is proposed for the non-uniform quantization. Most down-
stream tasks only need the salient foreground region of the
point cloud to be accurate enough, not the whole point cloud.
Thus, we propose a non-uniform compression and decom-
pression framework to improve the compression efficiency
to maintain the high performance of the downstream tasks.

We select feature points that are on sharp edges and planar
surface patches from LiDARs’ raw measurements. We follow



[20] to evaluate the curvature of a point in a local region to
classify it as an edge (high curvature) and planar point (low
curvature) according to

c(Pi) =
||∑Pj∈S ,Pi 6=P j(Pi−P j)||

|S | · ||Pi||
, (2)

where S is the set of consecutive points of Pi in the same
scan. And then we set a series of salience score thresholds,
to classify each cluster into different salience levels. For the
clusters which have fewer key points, we will reduce the
quantization accuracy of the residual data.

Residual Quantization Module. The residual data are
calculated by the range image minus the intra-predicted
range image. For example in Fig. 2, the residual of point A:
resA = rA− r̂A = |OA|− |OA′|. For the uniform compression
framework, the residual data will be quantized into integers
using uniform accuracy, and for the non-uniform framework,
the residual data in the unimportant clusters (such as leaves
on trees, or meadows) will be quantized into integers with
lower quantization accuracy. The maximum reconstruction
error of each point is half the quantization accuracy.

D. Decompression

In the decompression module, the segmentation info. data
and the quantized residual data will be decoded from the
same basic compressoras in the compression. And the intra-
prediction results can be obtained by the intra-prediction
module. Then the dequantization module recovers the integer
residual data into float numbers as the inverse process of
the quantization module. Then we can reconstruct the whole
range image by adding the residual data into the intra-
predicted range image, which can be transformed into a
reconstructed point cloud.

IV. EXPERIMENTS

A. Evaluation Metrics

In the compression stage, the original point cloud can be
encoded into a bit stream for storage or transmission. The
bit-per-point (BPP) and compression ratio (CR) are two naive
metrics to evaluate the size of the compressed bitstream. In
this paper, we only consider the geometry compression of
the point cloud, so, the BPP of the original point cloud is 96
for the three float values x, y, and z.

The reconstruction quality is evaluated by three evaluation
metrics: F1 score, point-to-point chamfer distance (CD) [25],
[26], and point-to-plane PSNR (D2 PSNR) [27], [28]. For the
original point cloud P and reconstructed point cloud P̂:

F1 = 2T P/(2T P+FP+FN), (3)

CD =CDsym(P, P̂) =
[
CD(P, P̂)+CD(P̂,P)

]
/2, (4)

PSNR = 10log10
[
3r2/max{MSE(P, P̂),MSE(P̂,P)}

]
, (5)

where the distance threshold in F1 score τgeo = 2cm and the
peak constant value of the point-to-plane PSNR r = 59.70m,
and the other detailed definitions are the same as in [6].
For downstream tasks, the bounding box average precision
(AP) [29], [30] of the classes car, pedestrian, and cyclist are

evaluated for 3D object detection, and in SLAM, the absolute
trajectory error (ATE) and the relative pose error (RPE) [31]
for translation and rotation are evaluated.

B. Dataset

To evaluate the compression ability and quality in the point
clouds with different densities, we choose three datasets:
HKUSTCampus, Oxford [32], and KITTI [33], which were
collected by a Velodyne VLP-16, Velodyne HDL-32E,
and Velodyne HDL-64E, respectively. The HKUSTCampus
dataset was collected with a handheld Velodyne at HKUST.
Because the point clouds are achieved directly from the range
images in HKUSTCampus, the points in the point clouds and
pixels in the range images can be completely assigned; but
the point clouds in Oxford and KITTI were pre-processed
before publication. In the comparative experiments on the
downstream tasks, the results of the original point cloud from
the dataset (Raw Data), and point cloud backprojected from
a range image (Original Data) are compared both.

The point cloud distribution in different scenes can be very
different. We choose city, residential, campus, and road in the
KITTI raw data, like [7], to evaluate the compression ratio
in various scenes. The point clouds in the first three scenes
are denser and better-regulated than in the road scene.

C. Ablation Study

Segmentation and Modeling. The segmentation methods
control the cluster size and residual range, and the modeling
methods vary the surf residual distribution. We implement
open3D DBSCAN as the instance-based segmentation base-
line as in [7]. The comparative results of FPS- and DBSCAN-
in Fig. 3 shows that our FPS-based segmentation method
is better than instance-based segmentation. Object-based
segmentation is not necessary in the compression tasks when
using BZip2 as basic compressor. Fig. 3 also shows that
the residual and residual BPP decrease when the cluster
is smaller and denser. The overall BPP is best when the
number in the cluster is from 50 to 100. Tab. I shows that the
plane modeling method in our framwork can largely decrease
the mean of the residual data, especially in the KITTI city
dataset, because there are more walls and planes in the city
scene. In the KITTI road dataset, the point modeling method
is better than the plane modeling method.

Basic Compressor. In this section, we show the compres-
sion ratios of our compression framework with different basic
compressors, and compare it with the baseline compression.
In the baseline compression, the single basic compressor is
used to encode the quantized point cloud with the same
quantization accuracy as the residual quantization in our
method. In our method with different basic compressor, the
number of clusters is set to 100 and the segmentation and
modeling method is FPS+plane. Fig. 4 shows that the denser
of the point cloud, the higher of the compression ratio.
From Fig. 4 and Tab. II we can find that the compression
performance of BZip2 is the best in our experiments, but the
speed is also the slowest.



TABLE I: COMPARATIVE RESULTS OF INFORMATION BPP, RESIDUAL BPP, AND MEAN OF RESIDUAL IN FOUR
DIFFERENT SETTINGS ON FOUR KITTI DATASETS IN SCENE CITY, RESIDENTIAL, CAMPUS, AND ROAD.

FPS+point FPS+plane DBSCAN+point DBSCAN+plane

IBPP RBPP Res IBPP RBPP Res IBPP RBPP Res IBPP RBPP Res
KITTI_city 0.6 1.8 0.7 0.65 1.74 0.56 0.56 1.78 1.68 0.59 1.76 1.5

KITTI_residential 0.51 2.57 0.57 0.55 2.55 0.52 0.43 2.64 2.35 0.44 2.64 2.22
KITTI_campus 0.93 2.53 0.93 0.99 2.53 0.9 1.01 2.54 1.69 1.08 2.52 1.67

KITTI_road 1.08 4.05 0.8 1.11 4.09 0.81 1.03 4.24 2.39 1.03 4.26 2.38
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Fig. 3: The chart diagram of BPP with different methods.
For example, FPS-10-point means the segmentation method
is FPS, cluster number is 10, and model method is point only;
DBSCAN-2.0-plane means DBSCAN with neighbor distance
(eps) 2.0m and the model method is plane/point.

TABLE II: THE ENCODING AND DECODING TIME COST OF
DIFFERENT COMPRESSORS.

Encoding time (ms) Decoding time (ms)

LZ4 BZip2 Deflate AC LZ4 BZip2 Deflate AC
16E 0.03 11.4 3.7 40 0.03 5.2 1.3 19.1
32E 0.04 26.5 9.7 92 0.03 11.7 3.72 43.4
64E 0.1 47.9 17.5 161.7 0.1 20.9 6.8 75.5

D. Comparative Results

In this section, we compare our proposed uniform and
non-uniform compression frameworks with the baseline
point cloud compression methods: the KDTree-based algo-
rithm from Google: Draco [4]; geometry-based compres-
sion method: G-PCC [34], [35]; and range image-based
compression using image compression method JPEG2000
(JPEG Range) [11], [12]. Our compression frameworks
use FPS+plane as segmentation and modeling method, the
number of clusters is 100, the basic compressor is BZip2,
and the dataset is KITTI city. More specifically, our non-
uniform compression method classifies the clusters into four
saliency levels, and the rules for the classification and non-
uniform quantization accuracy are shown in Tab. III. For
example, if the basic accuracy is 0.02m, and one cluster
has 7 key points, then the saliency level of this cluster is
2 and the quantization accuracy of the residual data in this
cluster is 0.02+0.04= 0.06m. We compare the quality of the
reconstructed point cloud and the performance of different
downstream tasks in this section.

Reconstruction Quality. Fig. 5 shows the quantitative

TABLE III: CLUSTERS’ SALIENCY LEVEL WITH NUMBER
OF KEY POINTS AND QUANTIZATION ACCURACY.

level 3 level 2 level 1 level 0
Key Point Num [0, 3) [3, 10) [10, 30) [30, inf)

Quantization Acc +0.06 +0.04 +0.02 Base Acc

HKUSTCampus Oxford KITTI-city KITTI-residential KITTI-campus KITTI-road
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results of our method with baseline methods on the KITTI
city dataset. It shows that the compression effectiveness and
reconstruction quality of our framework is much better than
that of the other three baseline methods, because we can
control the maximum error of the reconstructed point cloud
and the high-level basic compressor can compress the range
image better. The reconstruction quality of non-uniform
compression is a little less than the uniform compression
because the unimportant regions have large error.

Downstream Tasks. The first row of Fig. 6 shows the
evaluation results of the 3D object detection with a recon-
structed point cloud and raw data. Compared with other
methods, our proposed compression framework can reach
"lossless" compression and decompression at a lower com-
pressed size (BPP). And though the non-uniform framework
is not as good as the uniform framework in terms of
reconstruction quality, its performance in downstream tasks
is better than that of the uniform framework, because the
important objects and features are kept after compression and
decompression. The performance improvement of the non-
uniform framework is more obvious in small object detection
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Fig. 6: Quantitative results of the 3D object detection (PointPillar) on the KITTI detection dataset and SLAM (A-LOAM)
on the KITTI odometry dataset (seq 00). Bit-per-point vs. Car BBox AP@0.7, 0.7, 0.7 (↑), Pedestrian BBox AP@0.5, 0.5,
0.5 (↑), and Cyclist BBox AP@0.5, 0.5, 0.5 (↑), ATE RMSE Trans (↓), ATE RMSE Rot (↓), RPE RMSE Trans Per M (↓),
and RPE RMSE Rot Per M (↓) are shown from top to bottom, left to right.
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Fig. 7: The qualitative results of our uniform or non-uniform reconstructed point cloud compared with other baseline methods
on the KITTI dataset. The color in the point cloud and colorbar are based on the mean symmetric chamfer distance (Eq.
(4)) between the reconstructed and original point cloud.

like pedestrians or cyclists. The point-lossless feature of our
framwork is another advantage in hard object detection.

The second row of Fig. 6 presents the comparative results
of A-LOAM on the KITTI sequence 00 along with different
BPPs. The results show that the SLAM performance is less
related to the reconstruction quality, which means we can
obtain lossless SLAM results with a higher compression ratio
and a less-compressed bitrate. The experimental results show
that our framework can achieve about 40× compression ratio
without affecting downstream tasks (The intersection of the
our method and the green line in Fig. 6).

E. Qualitative Results
In this section, we show the reconstructed point cloud with

the original point cloud in Fig. 7. The color bar shows the
error between the reconstructed and original point cloud. The
first parameter in the caption is the setting of each method,
and the BPP is the bitrate. We can find that when BPP is near

2, the points in reconstructed point cloud of the pedestrians
are almost the same as in the original point cloud.

V. CONCLUSION

Our proposed uniform and non-uniform range image-
based compression method can be seen as a baseline for
large-scale lossless point cloud compression. The segmenta-
tion result in our framework will only influence the compres-
sion ratio but not the reconstruction quality. In downstream
tasks such as 3D object detection and SLAM, our method
can obtain a compressed bitstream of smaller size than the
other baseline methods when the point cloud is lossless.
Also, our non-uniform point cloud compression framework
can be merged with machine learning for better salience
map creation. By assigning a larger accuracy loss to the
unimportant areas, we could obtain a higher compression
ratio in future work.
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