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Quadratic Pose Estimation Problems: Globally
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Abstract—Pose estimation problems are fundamental in
robotics. Most of these problems are challenging due to the noncon-
vex nature. This also sets up an obstacle for uncertainty description
that is essential for pose integration and quality control. In this
article, we show that a large class of related problems can be cate-
gorized as the quadratic pose estimation problems (QPEPs) and we
propose a general quaternion-based mathematical model to unify
these problems. To solve the nonconvex QPEPs, a Gröbner-basis
method is investigated to derive their globally optimal and robust
solutions. Furthermore, we develop the rules for characterizing
the solvability and observability of these solutions. In addition, the
uncertainty description, i.e., covariance matrix, as an important
piece of information in robotic state estimation frameworks, is
analyzed in detail. Theoretical results show that the covariance can
be estimated via online optimization, in an efficient and unbiased
manner. In this way, both the solution and covariance are guaran-
teed to be globally optimal. Through simulations and experiments,
we show that the proposed QPEP-based solver is not only accu-
rate, robust, and efficient but outperforms the representatives for
covariance estimation. The designed algorithms are also assembled
as a C++/MATLAB/Octave/ROS library, while these developed
interfaces are built for main stream platforms and simultaneous
localization and mapping schemes.

Index Terms—Globally optimal solution, observability analysis,
pose estimation, robotic optimization, uncertainty description.
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I. INTRODUCTION

ROBOTIC agents sense the world and their nearby
environments by localization, mapping, and perception

techniques. The pose information of a robot is always essential
for self-awareness and motion control. The terminology pose
here consists of attitude and position in a compact manner. To
compute the egomotion and obtain accurate localization results,
the robot needs to estimate its pose from cameras/IMUs/laser
scanners and conduct calibration between these sensors. Many
algorithms get involved in giving solutions to absolute camera
pose estimation problems from perspective measurements,
including point, line, and conics-based correspondences.
Perspective geometry also helps attitude determination of
spacecraft relative to planets, astroids and other spacecrafts.
There are also many sensors other than cameras, e.g., inertial
measurement unit (IMU), laser scanner, and global navigation
satellite systems (GNSS) receiver. In robotics, pose estimation
is not only obtained for self-navigation, but also occurs in kine-
matics of multiple robots like serial and parallel ones. As many
joints and links of these robots may have been coupled, this also
provides a background that the attitude and position may also
be coupled. Actually, all pose estimation problems described
previously are not simple, which means that accurate solutions
of them will be challenging. This motivates us to propose a
concept called the quadratic pose estimation problem (QPEP)
that unifies all these seemingly very different problems. The
QPEPs are defined as those ones whose optimization objectives
are quadratic terms of the pose elements. Or equivalently, after
some analytical manipulations, its Jacobians can be interpreted
as those ones only in terms of quadratic terms only in the attitude
part. Most of the aforementioned problems belong to the set of
QPEPs, which are going to be solved in a generalized manner.

A. Major Challenges

1) Model Generalization: There are so many different
robotic pose estimation problems in various scenes. Each of
these problems has a different mathematical model and input
data. Therefore, it is not easy to give a very explicit generalized
mathematical model for all these problems. A model may work
quite well for one problem and obtain quite bad results for
another. Moreover, a generalized model should also consider
those conditions when some problems degenerate.

1552-3098 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on February 17,2023 at 08:55:06 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5930-4170
https://orcid.org/0000-0002-4617-3252
https://orcid.org/0000-0003-3325-1183
https://orcid.org/0000-0001-8927-0119
https://orcid.org/0000-0003-3535-6886
https://orcid.org/0000-0001-7372-266X
https://orcid.org/0000-0002-4500-238X
mailto:jin_wu_uestc@hotmail.com
mailto:2022087641@qq.com
mailto:yzhubr@connect.ust.hk
mailto:jiaojh1994@gmail.com
mailto:liu.ming.prc@gmail.com; ignorespaces eelium@ust.hk
mailto:petezheng@tencent.com
mailto:gaozhinus@gmail.com
mailto:jy369356904@163.com
https://doi.org/10.1109/TRO.2022.3155880


WU et al.: QUADRATIC POSE ESTIMATION PROBLEMS 3315

2) Globally Optimality and Computational Efficiency: Solv-
ing QPEPs are sophisticated since these problems are generally
nonconvex, which implies that any analytical solution will just
be an approximation and finding globally optimal solution is ac-
tually not easy. Note that, although solving QPEPs in a globally
optimal fashion is important, the solution must be robust and
efficient when encountering degenerate cases. Otherwise the
robots cannot effectively uses available measurements, which
indirectly lowers the feasibility of the developed algorithm. That
is to say, to fully address this problem, one must design a unified
framework with accurate uncertainty description together with
high robustness and low computation time, which is challenging
for the community.

3) Solution Quality Control: Due to the difficulty in solving
QPEPs globally optimally, the covariance information, being an
important issue for quantifying uncertainty of one pose, has not
been completely solved. The nonconvexity of QPEPs limits an
accurate uncertainty propagation using classical tools like Lie
algebra. Many globally optimal solutions have been proposed for
some specific cases of QPEPs. However, they still do not build
up a complete framework for quantifying the solvability and
observability, which are also essential for system monitoring.

B. Contribution

To solve related QPEPs, this paper contributes in the following
ways.

1) We would like to discuss something in common among
QPEPs. Then, we solve all general QPEPs in a unified
quaternion framework. The mathematical framework will
be simple and elegant, leading to the convenience in
solution.

2) We would like to solve the derived mathematical problem
in a globally optimal manner. Besides, the algorithm is
guaranteed to be robust and computationally efficient in
current robotic computers. Solvability and observability
rules are derived to quantify the globally optimal solutions.

3) Also, we would like to obtain uncertainty description
based on the developed unified framework. We will also
show that using quaternion, the error propagation is almost
unbiased. The uncertainty description is more accurate
than the current description methods.

The major discussed QPEPs are summarized in Table I.
By solving these QPEPs, we will also benefit as follows.
1) It is convenient to give unified globally optimal solutions

to hybrid problems of many different QPEPs. The solution
system can be compact, i.e., using only one single system,
a large branch of essential problems can be solved accu-
rately and efficiently.

2) It is also flexible to achieve unified covariance compu-
tation of related hybrid problems, e.g., propagating un-
certainty from camera and industrial robot for a typical
hand–eye calibration scenario; propagating uncertainty
for interlaced pipelines of RGB-Depth (RGBD) scene
reconstruction.

To verify that the proposed method is a generalized effective
one, we will show performance evaluation in the experimental

TABLE I
RELATED PROBLEMS OF QPEP

results. Experiments on PnP, hand–eye calibration, and a new
hybrid RGBD mapping pipeline are conducted. We will show
that the proposed method is generalized for all these problems
and is accurate compared with state-of-the-art methods. It also
builds up a general accurate and robust covariance estimation
framework for the first time. In this way, both the solution and
covariance can be guaranteed globally optimal.

C. Outline

The rest of this article is organized as follows: To clearly
state these problems, we first introduce some notations of this
article in Section I-D. Section II contains the definition of
QPEPs and a brief review of representative QPEPs and existing
representatives. Section III-B consists of the proposed unified
mathematical framework and globally optimal solution. We
derive principal rules for solvability and observability analysis in
Section III-C. Section III-D presents the uncertainty description
of the proposed scheme. In Section IV, we conduct many robot
experiments with ground truth to verify the efficiency of the
proposed candidate. Finally, Section V concludes this article.

D. Notations

1) Linear Algebra: Then-dimensional real Euclidean vector
space is Rn. A real matrix with size of m× n belongs to
Rm×n. For X ∈ Rm×n, the symbol (X)[i] extracts the ith
column of X . The Frobenius norm of a matrix X is ‖X‖ =√
tr(X�X) in which tr denotes the trace of the matrix and

(·)� stands for the transpose. Vectorizing an arbitrary ma-
trix X = (x1,x2, . . . ,xn) into n column vectors and listing
them in a compact vector gives the vectorization vec(X) =
(x�

1 ,x
�
2 , . . . ,x

�
n)

�. The Kronecker product between two ma-
trices is denoted as ⊗. For a matrix X ∈ Rn×n, the matrix is
positive semidefinite if all its eigenvalues are nonnegative, say
X � 0, and is positive definite if all eigenvalues are positive,
i.e., X � 0. For real matrices, the Hermitian is its transpose,
i.e., XH =X�. We use I and 0 as the identity and zero
matrices of proper dimensions, respectively. All n× n real
symmetric matrices such that X =X� form the space of Sn.

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on February 17,2023 at 08:55:06 UTC from IEEE Xplore.  Restrictions apply. 



3316 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 5, OCTOBER 2022

The vectorization of the upper triangular part of X ∈ Sn in
rows is given by symvec(X) ∈ Rn(n+1)/2 and its inverse reads
symmat[symvec(X)] =X . We use the symbol mineig to de-
note the minimum eigenvalue of a certain matrix. We sayX � υ,
if mineig(X) ≥ υ.

2) Lie Algebra: All 3-D rotation matrices form the spe-
cial orthogonal group SO(3) such that R ∈ SO(3) ⊂ R3×3 ⇒
R�R = I, det(R) = +1. For any real 3-D vector ξ =
(ξ1, ξ2, ξ3)

� ∈ R3, its skew-symmetric matrix is

ξ× =

⎛
⎝ 0 −ξ3 ξ2

∗ 0 −ξ1
∗ ∗ 0

⎞
⎠ ∈ so(3) (1)

which belongs to the Lie algebra so(3) and ∗ denotes the
skew symmetry. The exponential map R = exp(ξ×) = I +
ξ× + ξ2×/2! + · · · for a rotation R ∈ SO(3) characterizes a
mapping from so(3) to SO(3). The inverse mapping is the
logarithm map such that ξ× = log(R), in which ξ ∈ R3 is
the Lie algebra element that corresponds to R. The wedge
operation is defined as ∧ being a mapping from so(3) to R3 is
denoted as ξ∧× = ξ. We use R ∈ SO(3) and t ∈ R3 as rotation
matrix and translation vector, respectively, in the entire article.
When consideringR and t simultaneously, the 3-D special Eu-
clidean group is defined as SE(3), which forms a transformation

T via T = SE3(R, t) =
(

R t
0 1

)
∈ SE(3) ⊂ R4×4. To simplify

the attitude representation, we will also use unit quaternion
q = (q0, q1, q2, q3)

� such that ‖q‖ = 1, in some places. One
rotationR is quadratically represented by its quaternion q, and
for one rotationR, the q and its negative −q represent the same
rotation.

3) Polynomials: For a vector variable x, the term xp forms a
new vector containing a complete minimal set of p-order prod-
ucts of elements in x, where p ∈ Z+ is a nonnegative integer.
In this article, the ordering of the elements in xp is determined
by the Veronese map, such that qp = {qiqj · · · qk|i ≤ j ≤ . . . ≤
k, (i, j, . . . , k ∈ {0, 1, 2, 3})}. A multivariate polynomial f(x)
is called p-order if its monomial has the largest total order of
p. The gradient of multivariate polynomial f(x) with respect
to vector y is represented by ∇yf(x) and all x satisfying
∇xf(x) = 0 are called critical points, which include a complete
set of points reaching local minima or maxima of f(x).

4) Probability: We use ΔX to represent a small difference
of a matrixX and the expectation is denoted as 〈·〉. For a vector
signal x with noise term ε, its compound result is x̃ = x+
ε. The noise ε has the mean (expectation) value of ε̄ and the
covariance of Σx. If ε is subject to Gaussian distribution, it is
denoted as ε ∼ N (ε̄,Σx). Given two stochastic signals x and
y, their cross covariance is Σx,y . When y is the function of x,
such that y = f(x), the covariance propagation is

Σy ≈ J y
xΣx (J y

x)
� (2)

where J y
x denotes the Jacobian matrix of y at x̄ with respect

to x. Note that the accuracy of such an approximation is largely
determined by the nonlinearity of f and the nonlinearity descrip-
tion ability of J y

x.

Fig. 1. Diagram of perspective points, lines, and conics.

II. QPEPS AND RELATED WORK

A. What are QPEPs?

Definition 1 (QPEPs): The definition of the quadratic pose
estimation problems (QPEPs) is proposed for the first time in
this article, that is: For an SE(3)-differentiable optimization
objective L(R, t) for SE3(R, t) ∈ SE(3) such that

argmin
R∈SO(3),t∈R3

L (R, t) (3)

where L denotes a quadratic objective if L can be represented
in terms of quadratic products of elements in R and t. More
generally, L is also called a quadratic objective, if one can con-
duct limited algebraic manipulations to its Jacobian ∇vec(R)L
to further form an equation of critical points

∇vec(R)L ⇒ F [
vec(R)2

]
= 0 (4)

whereF is only in the quadratic form of vec(R). In a degenerate
QPEP, there is no translation t, namely, only the attitude partR is
considered. QPEPs own the property of additivity, i.e., a hybrid
problem of ad hoc QPEPs will also be a QPEP. This can be
proven by the additivity of Jacobian of ad hoc loss functions.
Solving QPEPs has been very important in robotics, since many
applications involve them, as described in the next subsection.

B. Related Algorithms

1) Perspective Geometry and Calibration: Fig. 1 shows a
diagram of perspective geometry of multiple features for ab-
solute camera pose estimation. Multiple objects including two
ellipsoids and a tetrahedron are imaged on the image plane
OIxIyI . The camera locates on the origin of the camera
frame OCxCyCzC . The target is to compute the poses of cam-
era relative to these three objects, namely T 1 = SE3(R1, t1),
T 2 = SE3(R2, t2), and T 3 = SE3(R3, t3), which give the
object frames of Oixiyizi for i = 1, 2, 3. Four vertices of the
tetrahedron are r1, r2, r3, and r4, respectively, in the world
frame OWxW yW zW , while the corresponding points on the
image plane are pi, i = 1, 2, 3, 4. In common, we can also
obtain relative poses between these objects by learning tech-
niques like PoseCNN [1], i.e.,T 12 = SE3(R12, t12) andT 32 =
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SE3(R32, t32) in Fig. 1, or in some specific applications like
aerospace engineering, when the two ellipsoids are planets
or asteroids, the relative poses can be easily acquired via
ephemeris [2].

Given 2-D interest point coordinates pi, i = 1, 2, . . . in the
image plane and corresponding points ri, i = 1, 2, . . . in the 3-D
world frame, the PnP problem is

s
(
p�i , 1

)�︸ ︷︷ ︸
p̃i∈R3

=K (Rri + t) , i = 1, 2, . . . (5)

in which s > 0 denotes the scale (depth) and p̃i is the ho-
mogeneous representation of pi and K ∈ R3×3 represents the
camera intrinsic matrix that projects the 3-D points to the 2-D
image plane. VectorizingR and stacking multiple measurement
functions in (5) obtains an approximate solution of R and
t, which is the direct linear transform (DLT) [3]. Although
s is constrained by R, t, it can be separately estimated to
obtain an initial guess, which has been achieved by the EPnP
algorithm [4]. Poses will then be refined using Gauss–Newton
(GN) or Levenberg–Marquardt (LM) iterations from these initial
guesses. However, when the outlier ratio is high, the accuracy
of initial guesses may not be satisfactory, which will lead to
the convergence to a local minimum. To solve these issues, in
the past ten years, researchers focus on finding global optimal
solutions to PnP problems, mainly using algebraic elimination
methods and semidefinite programming (SDP). In algebraic
elimination, the Gröbner-basis method [5], [6] is important,
and has been applied to many PnP solvers [7]–[9]. However, as
pointed out by [10], these solvers do not always achieve a robust
estimate. This reason is that when generating Gröbner basis,
some monomials may not occur in the particular problem, which
leads to nonexistent elimination steps that causing singularity.
The SDP method, although can relax the nonconvex problem
and solve it globally optimally, the computational efficiency
is not satisfactory that limits its real-time utilization, since the
relaxation may be sophisticated and the tightness is difficult to
be guaranteed for all problems [11].

Perspective geometries are similar. Because if we downsam-
ple the lines and conics, they become sets of perspective points.
From Fig. 1, it can be seen that the vertices of tetrahedron
form six lines, while four of them are projected onto the image
plane. When the line correspondences are considered, the prob-
lem becomes perspective-n-lines (PnL) one [12]. Furthermore,
when both point and line features occur, the problem of the
perspective-n-points and lines (PnPL) problem is involved [13].
Actually, line correspondences occur quite frequently in the
Manhattan and Atlanta world model for visual SLAM [14].
Recently, there have been many efficient algorithms for solving
PnL and PnPL problems [15]. There has been a consensus
that PnP, PnL, and PnPL can actually be united as a single
fundamental problem [16]–[18]. Therefore, pose determination
from perspective points and lines has been unified.

When the conic correspondences are taken into account, the
problem becomes to solving [19]

G�AG = γB (6)

in which A,B ∈ S3 denote the projected conic and the origi-
nal conic respectively; G = (r1, r2, t) withR = (r1, r2, r3) and
γ > 0 denotes the scale factor. γ can be estimated according to
the similarity of A and B. Conics-based pose determination is
useful in computer vision for navigation and camera calibration.
When the problem (6) is decomposed to solve the rotation, it can
be written into the following form:

ÃR = RB̃ (7)

where Ã, B̃ ∈ S3 are equivalent symmetric parameter matrices
accounting also for the scale.

2) Localization and Calibration: The form (7) is actually
very similar to the hand–eye calibration problem [20], [21], that
aims to find out the optimal transformation between robotic
gripper and attached camera. The hand–eye problem can be
modeled as

AX =XB (8)

in which A and B account for relative transformations from
the end effector of industrial robot and the camera, respectively;
X = SE3(R, t) denotes the unknown pose to be figured out.
Equations (7) and (8) own a similar form. However, there is no
unified solution to them because of a conflict that we name here
as the rigidity and symmetry. The rigidity and symmetry say that,
there is a relation between rigidity and symmetry that the closest
rigid transformation of a symmetric matrix is always the identity
matrix. This can be proven by matrix orthonormalization method
in [22] via singular value decomposition (SVD). Therefore, most
analytical solutions to (8) cannot be manipulated to solve (7),
and vice versa.

The aforementioned problems are all QPEPs, but QPEPs are
not limited to these problems. The point-to-plane registration
problem is also a QPEP, which obtains optimal transformation
between two point clouds by considering the point-to-plane
constraint, such that

argmin
R∈SO(3),t∈R3

∑[
n�

i (bi −Rui − t)
]2

(9)

where bi and ui are ith corresponding points from two point
clouds and ni is the ith normal vector of the target plane.
Point-to-plane registration is a typical nonconvex pose esti-
mation problem and is essential to scene reconstruction and
simultaneous localization and mapping (SLAM). Previously,
(9) is solved by GN and small-angle approximation of R [23],
[24]. Therefore, the globally optimal solution to (9) is still open.
Moreover, the multi-GNSS attitude determination is important
for robotics and aerospace engineering [25], and is also a QPEP
because it can be parameterized as the following problem [26],
[27]:

argmin
R∈SO(3)

tr
(
RAR�B −RC) (10)

where A,B,C are 3× 3 matrices. Equation (10) is also not
easy-to-solve, in [26], the GN estimator is suggested and some
other methods use the Kalman filter [28].

There are also some other problems seemingly not like QPEPs
but can be transformed into QPEPs via some techniques. For
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instance, the 3-D relative pose estimation from range measure-
ments of mobile robots can be parameterized as [29], [30]

(p1,i − t)�Rp2,i + p�1,it = εi, i = 1, 2, 3, . . . (11)

in which pk,i denotes the position of the kth robot at ith time
instant, εi is a known quantity. Since there is a strong coupling
between R and t, stacking all subequations in (11) and differ-
entiating them will generate a sophisticated system in which
t cannot be separated with R. In [29], an algebraic elimination
method with 27 constraints is proposed. In both [29] and [30], the
authors solve the system via homotopy continuation, a general
but inefficient method for nonlinear polynomial equations. In
fact, following the idea of [29], if we set a temporary variable
x = R�t as independent variable, adding also the constraint
that x�x = t�t gives a new system. Then, the gradient of this
system forms a QPEP (see supplementary material). The forward
kinematics of the Stewart platform aims to find the pose of the
upper platform from measurements of lengths of six legs, each
of them satisfies [31]

l2i = ‖yi −Rei − t‖2 , i = 1, . . . , 6 (12)

where yi and ei are ith coordinates of the bottom and upper plat-
forms connected by one single leg with length of li, respectively.
Like (11), forward kinematics of the Stewart platform also has
strong coupling betweenR and t. Therefore, this problem is also
challenging in the computational aspect. However, via similar
manipulations, we can also turn (12) into a QPEP (also see the
supplementary material).

C. Solvability and Observability

There is currently no general solvability and observability
rules for general QPEPs, to our limited knowledge. However, for
some specific problems, there are detailed discussions. QPEPs
are usually parameterized as polynomial optimization problems.
Thus, the solvability and observability shift to the polynomial
system theory. For instance, the minimal case of the PnP prob-
lem, i.e., the perspective-3-point (P3P) one, has complete root
classification [32]. For the PnL problem, sufficient conditions
for solvability are presented in [15]. Also, discussion in [33]
gives potential information for the observability of perspective
line correspondences. There also exist many discussions on
the solvability and observability of hand–eye calibration [34],
[35]. The relative pose estimation from range measurements
has quite sophisticated form, whose observability is investigated
via the nonlinear system theory in [29]. There also exist some
discussion on relative range-based navigation in [36]. For the
Stewart platform, considerable efforts have been paid in finding
symbolic rules for deducing the root numbers of the algebraic
system [37]–[40]. Till now, it is still hard to combine all these
rules into a unified one, which requires further investigation.

D. Uncertainty Description

The uncertainty description of the solution is important for
robotic state estimation pipelines. The uncertainty in this article
is identical to covariance. In fact, due to the nonlinearity of
the rotation group SO(3), the error propagation using the Lie

algebra is not so easy as posed in [41], since Lie exponentials
are approximated with high orders. This leads to the fact that
obtaining the analytical expression of the covariance of the Lie
algebra is also not easy. Barfoot et al. proposed uncertainty
propagation rules for the pose estimation problem on SO(3)
and SE(3) [42]. The conclusion was that for most problems,
fourth-order results are close to ground truth, while lower order
results are unsatisfactory. Mangelson et al. refined the theory
by introducing cross covariance [43] and pointed out that in
some cases, cross-covariance information will be essential to
the final accuracy of uncertainty. Learning techniques are also
widely studied for pose estimation and uncertainty determi-
nation [44], [45]. These methods have quite deep potential in
dealing with localization problems in unstructured environments
but also suffer from overfitting and long training process and
large input samples. For some specific problems, covariance
estimation algorithms have been designed. Nguyen et al. studied
the uncertainty framework of the hand–eye calibration problem
AX =XB [46]. A maximum likelihood estimation (MLE)
method is invoked for iterative solution and covariance estima-
tion. The MLE also helps build up probabilistic solution to the
PnP problem [47], which gives covariance information accord-
ing to the noise distribution of input points. The Kalman filter
is one of the feasible tools for uncertainty propagation, which
has been successfully applied in SLAM [48]–[50]. There are
some limitations for uncertainty propagation using the Kalman
filter, one is that the process and observation models should not
be highly nonlinear, otherwise even an extended Kalman filter
(EKF) will suffer from instability. The second one is that to use
a Kalman filter, one must have reliable dynamic process model,
which may not exist in some scenarios, such as purely visual
navigation. For other problems, due to the complexity of many
solvers, the covariance propagation can hardly be derived. In
the work of semidirect visual odometry (SVO) [51], the authors
also pointed out that, due to lack of effective uncertainty descrip-
tion, the fusion with IMU has not been effectively developed.
Recently, to cope with this problem, deep neural networks are
employed to estimate the uncertainty [52], which relies on the
training process with mandatory sample data.

III. PROPOSED SOLUTIONS

A. Preliminaries

Following Section II-A, directly solving R, t from (3) is not
easy since there are many nonlinear constraints of elements on
SO(3) and what is more, two terms R and t are nonlinearly
coupled together. Currently, there are many attitude representa-
tions, e.g., quaternion, Rodrigues vector, Euler angles, Cayley
parameters, etc. However, the nonlinearity and singularity of
each of these representations are quite different. Rodrigues
vector and Euler angles are minimal 3-D attitude representations
but all have singularity problems, e.g., the gimbal lock effect of
Euler angles when the pitch angle approaches ±π/2. Therefore,
we use quaternion in the following contents to represent R. In
this way, (3) can be cast into

argmin
q�q=1, t∈R3

L (q, t) (13)
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which has the Lagrangian of L̃(q, t, λ) = L(q, t)− λ(q�q −
1). All local minima of the problem (13) can be found by zeroing
the system of gradient

∇yL̃(q, t, λ) = 0 (14)

where y = (q�, t�, λ)� is the total variable to be solved. All
QPEPs can be manipulated to the form of{

f
(
q4, λ

)
= 0

q�q = 1
(15)

via some algebraic operations, while t can be represented in the
linear combination of elements in q2, say t = T (q2), where T
represents such a linear map of elements in q2 to t. This gives
the result that (15) can be further transformed into

M
(
q2
)
q = (Q− λI) q (16)

where M(q2) is a matrix in the linear form of q2 and Q ∈
R4×4 is a parameter matrix. From (16), one can see that q is
the eigenvector of Q−M(q2) associated with the eigenvalue
λ. Therefore, (16) is actually a recursive eigenvalue problem,
that is, the eigenvalue λ is recursively related to q in a nonlinear
manner. By denotingu = q ⊗ q ⊗ q ∈ R64, whereu represents
one of many permutations of elements in q3, we can write (16)
as

Wu = (Q− λI) q, s.t. q�q = 1 (17)

which is the essential form of the unified mathematical frame-
work for QPEPs, whereW ∈ R4×64 is a pure parameter matrix.
Equation (17) is a three-order multivariate polynomial system
that cannot be solved algebraically due to the theorem of Ruffini–
Abel [53].

Remark 1: For those cases that R→ I , we may use R ≈
I + ξ× for an approximate rotation, where ξ = [log(R)]∧. In
this condition, solving R and t from (3) becomes a linear
unconstrained least-square problem with respect to ξ and t, say

Ax = b (18)

where x = (ξ�, t�)�, A and b come from input data. Equa-
tion (18) is a linear system that can be solved easily via QR
decomposition, LU decomposition, and SVD, considering dif-
ferent conditions of A. After solving x, the obtained rotation
may not be exactly on SO(3), which should be orthonormalized.
The practitioners may turn to [54] and [55] for orthonormaliza-
tion on SO(3), and moreover, turn to [56] for the refinement on
SE(3).

B. Solution Strategies

To solve q and λ from (17), one must conduct variable
elimination to decrease the quantity of unknowns. In this article,
we use the Gröbner-basis method to deal with this problem.

Definition 2 (Gröbner-basis Method): The Gröbner-basis
method finds out the Gröbner basis of a polynomial system
and solves the system from the lowest order terms sequentially.
By generating the symbolic factor matrix M together with all
monomials g involved in the Gröbner basis, it is able for us to

write the polynomial system

Mg = 0. (19)

Note that the first several terms in g are 1 and the unknown q to
be solved, which form the vector g1 and the remainder is g2 so
that g = (g�

1 ,g
�
2 )

�. The elimination template is the symbolic
procedure to eliminate variables so that g is ordered and all
variables are presented in a maximally independent fashion.
That is to say, the elimination template is an algebraically
manipulated version of M, but with reduced size. After an
elimination template is constructed, the action matrix can be
obtain using the Schur complement for solution of only those
required variables. For better understanding of the Gröbner-basis
method, see [5] and [6]. Thus solving all solutions from (19)
is equivalent to finding g1 via Schur complement and eigen-
decomposition of M. Generating M and g is not difficult in
symbolic computation. By evaluating (19), one can conclude
that (17) has at most 40 complex and real solutions, according
to the Bezout theorem [53]. However, directly solving (17) using
(19) is usually not efficient and robust. The reasons are threefold.

1) There will be zero terms or linearly dependent
columns/rows of W and Q in some cases, leading to the
fact that some fundamental monomials vanish in g and the
solution may be trivial.

2) Since λ acts as a penalty factor, for cases with small noise,
λ will be very close to zero. Namely, when eliminating λ

from (17), the induced system may be very sensitive to
input noise and the computed λ will be meaningless.

3) When eliminating λ, the size of the elimination template
significantly grows. If the quantity of all unknowns is
large, the size ofMwill also be large, i.e., the computation
of the Schur complement and eigendecomposition will be
inefficient.

The elimination of λ is not unique. For one example, (17)
indicates that

λ2 = (Qq −Wu)� (Qq −Wu) . (20)

If we write (17) into⎧⎪⎪⎨
⎪⎪⎩
q� (q0P11 + q1P12 + q2P13 + q3P14) q − b�1 q + λq0=0
q� (q0P21 + q1P22 + q2P23 + q3P24) q − b�2 q + λq1=0
q� (q0P31 + q1P32 + q2P33 + q3P34) q − b�3 q + λq2=0
q� (q0P41 + q1P42 + q2P43 + q3P44) q − b�4 q + λq3=0

(21)
via algebraic induction, where P ij ∈ S4 for i, j = 1, 2, 3, 4 de-
note symmetric factor matrices, while bi ∈ R4 for i = 1, 2, 3, 4
represent factors for first-order quaternion terms, we can see
that there are four different ways of eliminating λ. Comparing
(20) and (21), it is evident that two elimination approaches
are quite different. However, due to the rotating symmetry of
q20 + q21 + q22 + q23 = 1, the four elimination methods of λ in
(21) are identical. Therefore, using the transformation of the
first subequation of (21), i.e.,

λ =

[
b�1 q − q�

3∑
i=0

qiP1(i+1)q

]
/q0 (22)
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one may derive a new system, which is free of λ, such that

Dv +Gy + c = 0, s.t. q�q = 1 (23)

where v denotes a certain subset of complete minimal set of q4

and y represents a certain subset of complete minimal set of
q2, whileD,G, and c are factor matrices and vectors. Solving
the Gröbner bases of (23) seems not easy and as a result,
the newly transformed system has at most 128 solutions, also
according to the Bezout theorem. This indicates that (23) is more
sophisticated than (17) but (23) actually provides a simplest
form of QPEPs that only relates to the quaternion, which can
be conveniently employed for uncertainty analysis.

To address the difficulties, we first need to analyze the struc-
tures of W and Q using symbolic engines like MATLAB and
Mathematica. We use symbolic tools to deduce the zero and
linearly dependent rows/columns ofW andQ. We also perform
a detailed checking of all repeated terms that appear not in the
same rows and columns. After that, we will also check the
linear independence of W andQ when solving QPEPs using
the Gauss–Jordan elimination. As λ → 0 for some small-noise
cases, we neglect λ for these cases, namely solving a reduced
system {

W̃u− Q̃q = 0
q�q − 1 = 0

(24)

where W̃ ∈ R3×64 and Q̃ ∈ R3×4 are reduced matrices of W
and Q, respectively, by selecting 3 out of 4 rows with four
row permutations {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}. Thus,
in this way, four potential sets of solutions are generated from
(24). To choose the best solution, one can insert all these so-
lutions back into the loss function (3) and select the one that
corresponds to the least loss-function value. Since these four
branches have the same elimination procedures, they can be
executed in parallel with hardware parallelism or multithreading
programming. As we can see, in (24), λ is cancelled, the gener-
atedMmatrix has a smaller size than previous ones, which leads
to more efficient implementation. The final optimal solution may
not be exactly accurate since there will be numerical loss in
computation of M. When a best solution is found out, one may
refine the solution using GN and LM techniques by (23), which
treat (23) as an error vector in terms of q.

In fact, from (16) and (20), it can be deduced that (24)
provides an optimal initial guess to guarantee the smallest λ2.
The expression of M may not be unique since there are many
conditions that some monomials vanish. Also, for those cases
that solutions are ambiguous, the size ofM reduces. In practice,
we can choose the M, which is the most reducible. The sizes of
elimination template are summarized in Table II. Smaller sizes
indicate much faster computation speed for eigendecomposition
and solution verification. However, it should also be noted that,
a smaller template usually accompanies lower stability, that is,
the elimination may be failed and not all of potential solutions
can be found out.

The solution sizes also vary with different action matrix sizes,
e.g., 27 solutions for 239× 239 and 249× 249 templates, 16
solutions for 129× 129, 151× 151, and 189× 189 templates.

TABLE II
ELIMINATION TEMPLATE SIZES OF QPEPS

Remark 2: Another technique to generate all solutions to (23)
is by further elimination, which is not utilized in the proposed
QPEP. Note that we can still eliminate one more quaternion
component, e.g., q0 from (23) using the substitutions as follows:

q40 =
(
1− q21 − q22 − q23

)2
q30 =

(
1− q21 − q22 − q23

)
q0

q20 =
(
1− q21 − q22 − q23

)
. (25)

We suggest the substitution ordering in (25) that the terms are
replaced from the most complex ones. In this way, one will obtain
a system where q0 only exists in the first order, with which one
can eliminate q0 and construct three equations of q1, q2, q3. The
new equation has 70 subterms of the degree 7 and is no longer
depending on the quaternion norm constraint q�q = 1. Generat-
ing the Gröbner basis for this new system is harder than previous
quaternion ones, since there are more complicated monomials
involved, and inevitably, more extraneous roots are introduced.
We can still solve this system by finding the Sylvester matrix S
in q3 so that a linear system

Sφ = 0 ⇒ det (S) = 0 (26)

can be generated, where φ contains all monomials related to q1
and q2. The equality det(S) = 0 forms a univariate polynomial
of q3 in the degree of 40. Then, solving all roots of q3 generate the
complete set of potential local minima. Note that here in (26), the
determinant of the Sylvester matrix also equals to the resultant of
the system to be solved. Thus, using symbolic resultant solvers,
similar forms of S can also be derived. However, what should
be noted here is that since the derivation of S is sophisticated,
the generated factor matrices will be extremely lengthy, which
means that using this approach for a complete elimination is
not efficient. Besides, to solve all potential roots, we need to
solve all roots of the 40-degree univariate polynomial, which
significantly suffers from the so-called Runge phenomenon that
occurs in high-order polynomials [57]. The Runge phenomenon
actually describes the fact that a high-order polynomial is very
sensitive to small perturbation of input variable. That is to say, it
is hard to distinguish very accurate solutions when the solutions
are small. As a result, arbitrary-digit arithmetic libraries will be
highly required, which significantly reduces the computational
efficiency.
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C. Solvability and Observability Analysis

1) Solvability: It can be verified through symbolic engines
that u = 1

3J u
q q. Therefore, combining with (17), we can see

that

S(q2)q = λq (27)

in which S(q2) = Q− 1
3WJ u

q . The eigenvalue system (27)
indicates that λ is the root of the characteristic polynomial

det
[
S(q2)− λI

]
= 0. (28)

Expanding (28), one may arrange the equation in terms of λ so
that

λ4 + τ1λ
3 + τ2λ

2 + τ3λ + τ4 = 0 (29)

where τ1, . . . , τ4 are functions of q. Previous algebraic results
of quartic polynomials [57] show that (29) can be manipulated
to a simpler form without cubic term

λ4 + τ̃1λ
2 + τ̃2λ + τ̃3 = 0 (30)

in which τ̃1, . . . , τ̃3 are manipulated coefficients. In this way, the
solvability of q becomes quantifying the feasible regions of λ.
One may need to answer the problem that whether (30) has real
roots, and moreover, whether these roots are distinct or repeated.
Sinceq ∈ R4,λ should also be real numbers. However, the struc-
ture of S(q2) does not guarantee that it is always real symmet-
ric. Using the discriminants [53] of (30), i.e., A = τ̃21 + 12τ̃3,
B = 9τ̃22 + 2τ̃1(τ̃

2
1 − 4τ̃3), andC = 6τ̃1τ̃

2
2 + (τ̃21 − 4τ̃3)

2. The
following rules deduce the quantities of the roots of (29).

Rules 1 (Solvability of a QPEP).
1) Two distinct real roots and two distinct complex roots:

B2 − 4AC > 0 (RS1).
2) When B2 − 4AC < 0 (RS2).
1) Four distinct complex roots: B ≥ 0 or A ≥ 0 (RS21).
2) Four real roots: B < 0 and A < 0 (RS22).
3) When B2 − 4AC = 0 (RS3), there must have been re-

peated roots.
1) Two real roots and two complex roots: B �= 0 and

τ̃1B
2/2 + (τ̃2A)

2 > 0 (RS31).
2) Four complex roots: B = 0, A �= 0 and τ̃1 > 0 (RS32).
3) Four real roots: Otherwise (RS33).
Remark 3: Following these rules, if the roots are real and

repeated while the repeated ones exactly have the smallest ab-
solute values, the system has multiple solutions, i.e., the system
is partially solvable. One classical case is the PnP problem with
only four noncollinear point pairs, namely, the P4P problem.
The P4P problem normally has unique solution. However, when
one point is collinear with another, the problem degenerates. In
such a problem setup, the S(q2) matrix will have exactly two
equal reals λ that correspond to different quaternions. For proper
solutions, we must have at least one feasible λ in the real domain.
This indicates that (RS2)∩(RS21) and (RS3)∩(RS32) must not
happen. These inequalities define the infeasible regions of the
pose, where point correspondences degenerate. These infeasible
regions actually characterize those workspaces where pose is not
completely estimated.

2) Observability: In the condition that one problem is solv-
able, the observability specifies the quality for one system to
observe the estimated pose components. Given the system (23),
it is easy for us to write out its Jacobian of first subequations

J e
q =DJ v

q +GJ y
q ∈ R3×4 (31)

where the residual is denoted as

e =Dv +Gy + c. (32)

The complete Jacobian of (23) reads

J eq =

[(
J e

q

)�
, 2q

]�
∈ R4×4. (33)

The Jacobian in (33) is of full-rank if q is completely observable
to the system, and is rank-deficient if q is partially observable
or unobservable. To analyze the rank of J eq, we can perform
the Gauss–Jordan elimination so that one can obtain a reduced
row echelon form of J eq, say

J̃ eq =

⎛
⎜⎜⎝

1 0 0 ϑ1

0 ϑ6 0 ϑ2

0 0 ϑ5 ϑ3

0 0 0 ϑ4

⎞
⎟⎟⎠ . (34)

We do not perform SVD because this operation cannot gener-
ate explicit symbolic expressions. The following rules specify
different observability conditions.

Rules 2 (Observability of a QPEP)
1) If ϑ4 �= 0, ϑ5 �= 0, ϑ6 �= 0, we have rank(J̃ eq) = 4, the

system is completely observable. (RO1)
2) If ϑ4 = 0, ϑ5 �= 0, ϑ6 �= 0, we have rank(J̃ eq) = 3, the

system is partially observable and owns the observable
attitude freedom of 2 (one quaternion has 3 degrees of
freedom). (RO2)

3) If ϑ4 = 0, ϑ5 = 0, ϑ6 �= 0, we have rank(J̃ eq) = 2, the
system is partially observable and owns the observable
attitude freedom of 1 (one quaternion has 3 degrees of
freedom). (RO3)

4) If ϑ4 = 0, ϑ5 = 0, ϑ6 = 0, we have rank(J̃ eq) = 1, the
system is completely unobservable. (RO4)

The intersection (RO2)∩(RO3)∩(RO4) will form infeasible
regions. By avoiding these infeasible regions, the system (23)
possesses full observability of q.

Remark 4: Evaluating ϑ1 ∼ ϑ6 may be challenging even for
a modern symbolic computation system. In engineering, one
usually cares about whether the system is fully observable, rather
than its specific observable degrees of freedom. Therefore, using
determinant, we can taste the system. The word “taste” means
that we may first check if the system is solvable or not, and then,
deduce that whether we need to solve the problem. Following
this criterion, the feasible region of q enables det(J eq) �= 0,
which roughly gives a measure of the observability.

D. Uncertainty Analysis

Prior to uncertainty description, we perform a detailed error
analysis of some terms. The difficulty of error analysis concen-
trates in the rotation terms according to the many constraints.
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Therefore, we use the pure-quaternion equation (23) to conduct
error and covariance analysis about q. The residual in (32) leads
to the following perturbation model:

Δe = ΔDv +DΔv +ΔGy +GΔy +Δc. (35)

Using the Kronecker product vec(AXB) = (B� ⊗
A)vec(X), it follows that

ΔDv =
(
v� ⊗ I)Δvec(D) = VΔd (36)

ΔGy =
(
y� ⊗ I)Δvec(G) = YΔg (37)

where V = v� ⊗ I , Y = y� ⊗ I , and d = vec(D), g =
vec(G). The complete error analysis of v and y is conducted
as follows. First, we have an algebra fact that v = 1

4J v
qq,

y = 1
2J y

qq, which can be easily reproduced via symbolic en-
gines. Discretizing them leads to Δv = 1

4 (ΔJ v
qq +J v

qΔq),
Δy = 1

2 (ΔJ y
qq +J y

qΔq). For v, the Jacobian difference part
can be computed via

ΔJ v
qq =

4∑
j=1

Δ
(
J v

q

)
[j]

qj−1 (38)

where another algebraic fact is that

(
J v

q

)
[j]

=
1

3

∂
(
J v

q

)
[j]

∂q
q. (39)

This can be further derived to

Δ
(
J v

q

)
[j]

=
1

3

⎛
⎜⎝Δ

∂
(
J v

q

)
[j]

∂q
q +

∂
(
J v

q

)
[j]

∂q
Δq

⎞
⎟⎠ (40)

where we have

Δ

∂
(
J v

q

)
[j]

∂q
q =

4∑
k=1

Δ

⎡
⎢⎣∂

(
J v

q

)
[j]

∂q

⎤
⎥⎦
[k]

qk−1 (41)

⎡
⎢⎣∂

(
J v

q

)
[j]

∂q

⎤
⎥⎦
[k]

=
1

2

∂

∂q

⎧⎪⎨
⎪⎩
⎡
⎢⎣∂

(
J v

q

)
[j]

∂q

⎤
⎥⎦
[k]

⎫⎪⎬
⎪⎭ q. (42)

By repeating such mechanisms over and over again, the high-
order Jacobians become constant matrices and cannot be per-
formed any more. The final result is shown as follows: (43)
shown at the bottom of this page

Simplifying these results recursively gives an interesting fact
that Δv = J v

qΔq and likewise for y, Δy = J y
qΔq. This

shows that Jacobian matrices of v and y completely describe
the nonlinearity and are unbiased for covariance propagation
using

Σv = J v
qΣq

(
J v

q

)�
Σy = J y

qΣq

(
J y

q

)�
. (44)

This is very different from approaches from [42] and [46], where
error propagation of the Lie algebra on SO(3) and SE(3) has
been invoked. Therefore, due to the fact in (44), the Jacobian
covariance propagation is potentially more accurate than that in
the Lie theory, namely, the proposed method will not require
any high-order approximation of Lie exponentials. Lie-algebra
uncertainty propagation also suffers from the fact that solving
the globally optimal Lie algebra representation of the pose from
a nonconvex pose estimation problem is challenging, also due to
the Lie exponentials and nonlinearity of Lie logarithms. There-
fore, practitioners usually need to convert the results in other
pose representations into the Lie algebra for further computation,
if they would like to guarantee the global optimality of the
solution.

Following these results, we can write Δe = VΔd+ FΔq +
YΔg +Δc, where F =DJ v

q + Y J y
q . All these error

terms contribute to the autocovariance Σe,auto = VΣdV� +
FΣqF

� +YΣgY� +Σc and cross-covariance part of

Σe,cross = VΣd,qF
� + VΣd,gY� + VΣd,c + FΣq,dV�+

FΣq,gY� + FΣq,c +YΣg,dV� +YΣg,qF
�+

YΣg,c +Σc,dV� +Σc,qF
� +Σc,gY�

such that Σe = Σe,auto +Σe,cross. Since for globally optimal
q, one always has e = 0, it also follows that Σe = 0. Moreover,
from Δe = 0, one obtains −FΔq = VΔd+YΔg +Δc.
Postmultiplying last equation by Δq�F� and computing the
expectation will give −FΣqF

� = VΣd,qF
� +YΣg,qF

� +
Σc,qF

�, which turns Σe into

Σe = VΣdV� +YΣgY� +Σc + VΣd,gY� + VΣd,c+

YΣg,dV� +YΣg,c +Σc,dV� +Σc,gY� − FΣqF
�.

Therefore, we have

FΣqF
� = VΣdV� +YΣgY� +Σc + VΣd,gY�+

Δ

⎡
⎢⎣∂

(
J v

q

)
[j]

∂q

⎤
⎥⎦
[k]

=
1

2

⎛
⎜⎝Δ

∂

∂q

⎧⎪⎨
⎪⎩
⎡
⎢⎣∂

(
J v

q

)
[j]

∂q

⎤
⎥⎦
[k]

⎫⎪⎬
⎪⎭ q + ∂

∂q

⎧⎪⎨
⎪⎩
⎡
⎢⎣∂

(
J v

q

)
[j]

∂q

⎤
⎥⎦
[k]

⎫⎪⎬
⎪⎭Δq

⎞
⎟⎠

=
1

2

⎛
⎜⎜⎝
⎧⎪⎪⎨
⎪⎪⎩

4∑
l=1

ql−1
∂

∂q

⎡
⎢⎢⎣
⎛
⎜⎝ ∂

∂q

⎧⎪⎨
⎪⎩
⎡
⎢⎣∂

(
J v

q

)
[j]

∂q

⎤
⎥⎦
[k]

⎫⎪⎬
⎪⎭
⎞
⎟⎠

[l]

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭+

∂

∂q

⎧⎪⎨
⎪⎩
⎡
⎢⎣∂

(
J v

q

)
[j]

∂q

⎤
⎥⎦
[k]

⎫⎪⎬
⎪⎭
⎞
⎟⎟⎠Δq. (43)
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VΣd,c +YΣg,dV� +YΣg,c +Σc,dV� +Σc,gY�

= Σmeas(q) (45)

where we denote the right side as Σmeas(q), meaning that this
part comes from measurements and estimated quaternion. All
the covariances on the right side are related to input data, which
can be evaluated very efficiently either using first-order approx-
imation or Monte-Carlo simulation. Equation (45) presents a
covariance criterion for the entire QPEP system. To estimate
Σq , one can use a single pair of measurements to construct ad
hoc equalities

F iΣqF
�
i ≈ VΣdi

V� +YΣgi
Y� +Σci

+ VΣdi,gi
Y�+

VΣdi,ci
+YΣgi,di

V� +YΣgi,ci
+

Σci,di
V� +Σci,gi

Y�

= Σmeas,i(q) (46)

in which the subscript i denotes the index of employed mea-
surements. Suppose that we have n sets of measurements to
compute the globally optimal QPEP, the following optimization
is constructed:

argmin
Σq∈S4,Σq�0

n∑
i=1

∥∥F iΣqF
�
i −Σmeas,i(q)

∥∥2 . (47)

However, (47) is not enough to solve Σq , because F ∈ R3×4

so the optimization has infinity solutions. To fix the most ap-
propriate one, the following two sufficient constraints must be
added.

1) To guarantee the total covariance of QPEP, the equality
(45) always holds.

2) The quaternion is constrained by ‖q‖ = 1. However, in
normalization of quaternion, there are always some very
small numerical errors. Therefore, one can set an upper
bound α > 0 of such normalization error so that Σq�q ≤
Σq�q,max, which can be reduced to 4q�Σqq ≤ α.

The final optimization then comes to

argmin
Σq∈S4,Σq�0

n∑
i=1

∥∥F iΣqF
�
i −Σmeas,i(q)

∥∥2
s.t. FΣqF

� = Σmeas(q)

q�Σqq ≤ α̃ (48)

in which α̃ is an equivalent threshold for the quaternion nor-
malization error. Each of constraints in (48) will be important.
The first equality constraint specifies the relative scale of Σq

with respect to Σmeas(q). One quaternion although has four
components, it only has a three degrees of freedom. From the
first constraint, it can be seen that the optimization without
quaternion normalization constraint is rank-deficient, namely
the covariance of q0 is not fully observable for some cases.
The second constraint fixes the uncertainty scale of q0. There-
fore, the estimation of Σq is complete. This concept can also
be used for recovering quaternion covariance from a rotation
covariance ΣR whose details are shown in the supplementary

material. The positive semidefinite condition will be equiva-
lent to another condition that the determinants of all principal
subminors of Σq are positive. These determinants are in the
polynomial form of z = vec(Σq), which can be stacked as
m(z) ≤ 0. Then, using (F i ⊗ F i)z ≈ vec[Σmeas,i(q)], (48)
can be simplified as argminz∈R16 z�Az − h�z subject to
the conditions: (F ⊗ F )z = d, q�Σqq ≤ α̃, m(z) ≤ 0, where
A =

∑n
i=1(F i ⊗ F i)

�(F i ⊗ F i), h =
∑n

i=1 2(F i ⊗ F i)
�d

with d = vec[Σmeas,i(q)]. By reducing the unknowns using
w = symvec(Σq), the optimization is

argmin
w∈R10

w�Ãw − h̃�
w s.t. Fw = ψ, m̃(w) ≤ s (49)

where Ã = (J z
w)�AJ z

w, h̃
�
= h�J z

w, F = (F ⊗ F )J z
w,

ψ = vec[Σmeas(q)], s = (α̃,0�)�, and m̃(w) is the equivalent
stacked inequality constraint. Equation (49) is a polynomial
quadratic programming problem with nonlinear inequality con-
straints and linear equality constraints. By introducing Lagrange
multipliers λ1 and λ2, the Karush–Kuhn–Tucker (KKT) con-
dition meets 2Ãw − h+F�λ1 +

∂m̃(w)
∂w λ2 = 0, Fw −ψ =

0, and m̃(w)− s = 0, which also denote a polynomial system
ofw,λ1, and λ2. Therefore, the optimization (49) can be solved
globally optimally via global polynomial optimization, which
can be relaxed via semidefinite programming.

Remark 5: It is also noted that since (48) follows linear
matrix inequalities (LMIs), the globally optimal optimization
may also be conducted via many relaxation techniques of LMI.
The reasons of global optimality are as follows:

1) the optimization is typical and can be solved via the convex
optimization theory;

2) the polynomial form of the KKT condition guarantees that
all conditioning states can be solved globally optimally via
polynomial equation solvers.

For instance, theGpoSolver1 [58] andGloptipoly2 [59]
achieve such semidefinite relaxation for globally optimal solu-
tion of polynomial optimization, which can generate C++ codes
for highly efficient robotic estimation problems. Therefore, the
solution for uncertainty description of q can be guaranteed
accurate and robust. When Σq is computed, the covariance of t
can be determined using

Σt =
∂T (q2)

∂q
Σq

[
∂T (q2)

∂q

]�
+

∂T (q2)

∂�
Σ�

[
∂T (q2)

∂�

]�
(50)

where � denotes all coefficient of q2 in T (q2). Since
∂T (q2)/∂q completely describes the nonlinearity of T (q2)
according to results in (43), the induced covariance of t is also
unbiased and accurate.

There are still some problems while implementing the co-
variance estimation problem. The following are some practical
considerations.

1) Scaling the Optimization: Another problem in implemen-
tation is that sometimes covariance matrices from measurements
are very small. This will cause numerical degeneration problems

1[Online]. Available: http://cmp.felk.cvut.cz/gposolver
2[Online]. Available: http://homepages.laas.fr/henrion/software/gloptipoly
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when optimizing (48). A practical method is to scale the problem
in a proper manner. Note that if we premultiply a scaling factor
� > 1 tow, forming a new variable w̃ = �w, the KKT condition
and the optimality does not change. This will lead to a new scaled
optimization

argmin
w̃∈R10

w̃�Ãw̃ − �h̃
�
w̃, s.t. Fw̃ = �a, m̃(w̃) ≤ s̃ (51)

where s̃ denotes an equivalent inequality upper bound. Via (51),
the optimization will be conducted much more friendly to many
optimizers.

2) Covariance Estimation: Simplified Optimization: For a
system with huge loads of data, evaluating F i for all mea-
surements is computationally inefficient. It is notable that when
Σq � 0, the term q�Σqq will always be positive. Therefore the
optimization (48) can be simplified to minimizing the value of
q�Σqq such that

argmin
Σq∈S4,Σq�0

q�Σqq, s.t. FΣqF
� = Σmeas(q) (52)

whose form is much more elegant but will loose a little bit
information. Equation (52) is also applicable to those cases
that D is almost singular, e.g., those ones with ill-conditioned
measurements. Writing (52) in a different manner, we observe
that the resulting optimization

argmin
z∈R16

(
q� ⊗ q�) z, s.t. (F ⊗ F ) z = ψ,Σq � 0 (53)

which is identical to

argmin
w∈R10

ζ�w, s.t. Ξw = symvec [Σmeas(q)]

symmat(w) � 0 (54)

where ζ = ∂(q�⊗q�)z
∂w , and Ξ = ∂(F⊗F )z

∂w . Equation (54) is a
conic programming problem, such that Σq ∈ S+, where S+

denotes the symmetric positive definite cone S+ := {X ∈
Sn,mineig(X) � 0}. Such a conic programming problem can
be solved very efficiently on a modern computer at the level of
several milliseconds.

IV. EXPERIMENTAL RESULTS

A. Overview

The algorithms proposed in this article are implemented using
C++ and MATLAB. The algorithmic procedures are summa-
rized in Algorithm 1. For C++, we use the C++11 standard for
programming. The practitioners can turn to https://github.com/
zarathustr/LibQPEP for details of compilation and usage. Most
of the comparisons are produced on a personal MacBook Pro
2019 computer with i7-8core 2.4-GHz processor. The MATLAB
version is R2020a. We implement many Gröbner-basis solvers
proposed in this article, which are used for comparisons with
different types of QPEPs. In the efficiency test, we use the one
with largest elimination template, namely the 249× 249 one
with action matrix size of 27× 27. To deal with the computation
of the Lie algebra on SO(3) and SE(3), the Sophus3 library is

3[Online]. Available: https://github.com/strasdat/Sophus

Algorithm 1: The QPEP Algorithmic Procedure.
Step 1: Construct the optimization objective function in
(13), check if it is a QPEP via its gradient form (14). If it
is a QPEP, transform it into (15), then generate
mandatory matricesW ,Q via (17).

Step 2: Do variable elimination via (22), and derive a
fundamental system in (23). Establish W̃ and Q̃ via
(24). Save these matrices in symbolic functions. Then,
obtain all local minima of the problem via the
Gröbner-basis method in (19). Finally, inserting these
local minima into the objective function, we obtain the
least function value that corresponds to the globally
optimal solution.

Step 3: If the users need secure certificate, they can
deduce the solvability and observability via
Section III-C.

Step 4: To obtain the covariance, first, we need to get the
Jacobian matrices in (45) at the solved globally optimal
solution. via Step 2. Finally, we construct the
optimization (48) or (54) to get the covariance via
convex programming.

employed. For all comparisons, the rotation, translation, and
pose errors are defined as

Erot = arccos
tr(R�Rtrue)− 1

2

Etrans = ‖t− ttrue‖2

Epose = ‖tpose‖
in which Rtrue and ttrue stand for the reference rotation and
translation, respectively; tpose is the translation of the error pose
T−1T true, with T the estimated pose and T true the true value
of the pose. For covariance estimation, we use CSDP4 as the
optimization solver. The CSDP is written in C programming
language, which is portable to C++ applications. The pose graph
optimization in this article is solved by the g2o5 library, which
is also written in C++. In the evaluation of covariance, we
do not distinguish ΣR and Σq because we develop in this
article a method for lossless conversion between them (see
supplementary material). Besides, we only compare the rotation
results since the translation is just a function of rotation (see
Section III-D) and (50). The covariance ellipse is employed
to visualize covariance matrices in details regarding both the
autocovariance and cross-covariance.

B. Accuracy and Efficiency: PnP Cases

A perspective model from a real camera is employed for
simulation, with the focal lengths of fx = 810.27, fy = 825.58,
principle points of cx = 568.66, cy = 321.98, and image size
of 1280× 720. World points are generated randomly. We use
the perspective model (5) to compute image points and neglect

4[Online]. Available: https://github.com/coin-or/csdp
5[Online]. Available: https://github.com/RainerKuemmerle/g2o
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Fig. 2. Mean accuracy sensitivity to point numbers of multiple PnP solvers.

Fig. 3. Rotation-error boxplots of different PnP solvers with different point
numbers.

those ones with negative depth or out of the image boundary.
To show the accuracy performance, the accuracy sensitivity to
point numbers has been studied. We generate synthetic datasets
with point number of 4 ∼ 10. The SRPnP [60], ASPnP [61],
OPnP [9], DLS [62], RPnP [8], and UPnP [10] are employed for
comparisons. We do not compare the accuracy with analytical
but not globally optimal ones, e.g., the EPnP [4]. All these
globally optimal candidates are implemented with no GN or LM
optimizers, for fair comparison of global optimality. In Fig. 2,
the studied case is contaminated by image noise with the level of
4 pixels. Then, using a different noise level, we depict the mean,
maximum, and minimum error performances in Figs. 3 –5. These
two pictures are presented in the way of boxplot. From the
results, we can see that with increasing point numbers, all the
algorithms reach better accuracy. For different candidates, the

Fig. 4. Translation-error boxplots of different PnP solvers with different point
numbers.

Fig. 5. Pose-error boxplots of different PnP solvers with different point
numbers.

errors when point number equals 4 are worst. In all conditions,
the proposed QPEP solver and OPnP have almost identical
accuracy. The UPnP algorithm, which is efficient for having
a smaller size of elimination template, does not work well for
some cases. The reason is simple that small-size elimination
template although leads to much faster computation of action
matrix and solutions, will also inevitably bring about unstable
behavior in variable elimination.

What we show next is the computational efficiency of various
candidates. All these candidates are implemented in C++ pro-
gramming language. For UPnP, we inherit the implementation
from original authors.6 We also implement the proposed QPEP
with multicore (8-core CPU) support viaOpenMP andOpenCL.

6[Online]. Available: https://github.com/laurentkneip/opengv
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Fig. 6. Mean runtime performances of various PnP solvers (10 000 trials).

TABLE III
COMPUTATIONAL STATISTICS OF VARIOUS PNP METHODS (25 POINTS)

The execution time of different algorithms are collected using
the platform shown in Section IV-A. A test with 10 000 times run
has been conducted for average performance. The internal timer
of MATLAB gives the runtime stats of the compared methods.
The results are shown in Fig. 6 with computational statistics
shown in Table III, from which we can see that when the number
of points is small, the RPnP takes the least computational time.
However, when the point number increases, the computational
burden will be higher and the UPnP becomes the fastest one.
The proposed method and its LM refined version is slower than
those faster ones, but still holds an level of 10−3 ∼ 10−2. We can
also see from last experiment that, all these fast methods do not
perform better than the proposed one. That is to say, the proposed
method is slower, just because of it satisfactory robustness,
which is inevitable for introducing a higher computational bur-
den. In summary of computational complexity, we set the fastest
algorithm asO(n log n) in the time unit of log sec. It should also
be noticed that, with modern computational technology, parallel
computing makes the matrix computation of the QPEP much
faster. The QPEP with multicore is only a little slower than
RPnP, and slightly faster EPnP with GN. The EPnP does not
guarantee global optimality and may fail in corner cases. The
RPnP does not guarantee a better accuracy than QPEP as shown
in previous tests.

Fig. 7. (Left) Example of P4P problem. (Right) Feasible region satisfying
solvability rule of (RS1) in Section III-C. The right subfigure does not have a
colormap. The colors only represent feasible region areas.

Fig. 8. Feasible region satisfying solvability rules of: (a) (RS31); (b) (RS32);
(c) (RS21); and (d) (RS22) in Section III-C. The colored regions correspond to
those q values that meet certain conditions. The figure axes are the same with
that in right subfigure of Fig. 7. Likewise, the right subfigure does not have a
colormap. The colors only represent feasible region areas.

C. Solvability/Observability Analysis: Examples of PnP

Consider a P4P problem with world points of
r1 = (1.489, 0.251,−0.5547)�,
r2 = (1.719, 0.9978, 0.6086)�,
r3 = (0.8988, 0.7825,−1.838)�, and
r4=(1.192, 1.846,−0.7485)�. When the perspective (pose) is
q = (0.68471, 0.58041, 0.32478, 0.29802)�,
t = (−0.3266,−1.616, 1.341)� (m), camera pose and world

points are illustrated in the left figure of Fig. 7. Following
solvability rules in Section III-C, the feasible region of (RS1)
is shown in the right plot of Fig. 7. Likewise, other feasible
regions are plotted in Fig. 8, including (RS31), (RS32), (RS21),
and (RS22). Note that, to generate these feasible regions, we use
the equality q0 =

√
1− q21 − q22 − q23 > 0. For the part q0 < 0,
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Fig. 9. Forward kinematics solutions of a hexapod Stewart platform. There are
two poses in two different rows. The numerical differences between the method
of Gao et al. and ours are at the level of 10−8.

the geometry is dual. Therefore, studying q0 > 0 is sufficient
for analyzing the solvability. One may see that (RS32) does not
hold. It also can be verified that the rule (RS3) never holds for the
studied case. Therefore, for this case, there will be no repeated
λ, i.e., no any triplet of these world points are collinear. Fig. 8(d)
contains a set of all quaternions such that λ are fully complex.
Therefore, Fig. 8(d) shows the complete infeasible region of the
studied P4P case. This indicates the following.

1) Only for feasible poses, the imaged points have positive
scale (depth) and is within the imaging plane. Those
infeasible poses will break these conditions.

2) In some cases, the P4P problem degenerates, e.g., part of
points coincide, which lead to infeasible solutions.

D. Uncertainty Description: Hand–Eye Calibration
Experiments

In industrial engineering, many types of robots help intelli-
gent manufacturing and automation. Typical ones include serial
robots and parallel robots. To achieve precision grasping tasks,
hand–eye calibration must be performed. The hand–eye calibra-
tion requires robot kinematics and camera poses as input. The
forward kinematics of serial robots has been extensively studied.
We now study the forward kinematics of the Stewart platform,
which is a parallel one that constrained by mechanical structures.
In Fig. 9, we show the computed poses of the moving platform
of the Stewart platform. The six coordinates of the base and
moving platform are given in the supplementary material. The
compared algorithm is the one by Gao et al. [39] that follows
symbolic elimination. From the results, we can see that the
proposed method well computes the forward kinematics. The
readers may reproduce the results via test_stewart.m in
the demo kit.

Conventionally, the camera pose of the hand–eye calibration
is obtained by PnP or the differential pose can be acquired from
two-view algorithms. Thus, one may see that the uncertainty
description of the hand–eye calibration involves the following
three parts:

1) the uncertainty of robot kinematics;

Fig. 10. Hand–eye calibration and uncertainty estimation using method of
Nguyen et al. [46].

2) the uncertainty of camera poses;
3) the uncertainty of hand–eye calibration propagated from

covariances of robot kinematics and camera poses.
We first deals with the third step. In previous work of Nguyen

et al. [46], the uncertainty of camera poses is evaluated offline
with statistical observations. However, the PnP covariance is
actually affected by its perspective, which is not considered
previously. We refine this problem by evaluating the covari-
ance of camera pose of PnP using results from Section III-D.
The simplified optimization in Section III-D2 is utilized for
covariance computation. The codes of Nguyen et al. [46] are
programmed via Python of version 2.7.7 We use the Python
functionality of the MATLAB to generate the comparison results
(see nguyen_covariance.m in the demo kit). We replicate
the original dataset of covariance as shown in the codes of
Nguyen et al. [46]. In our synthetic experiment, we first generate
samples in which only three sets of hand–eye measurements
exist. From previous results, one may know that the hand–eye
calibration will be solvable if two pairs of measurements are
available. However, the method of Nguyen et al. [46] cannot
continue with only two pairs of measurements, and thus, we
reach the current choice. We conduct 100 repeated simula-
tions for different samples. The statistical covariance matrix is
computed via statistical mean from solved pose data points of
different methods. The covariance is visualized in the way of
covariance ellipse. The results from method of Nguyen et al. [46]
are shown in Fig. 10 and those from the proposed method are
presented in Fig. 11 . The method of Nguyen et al. [46] uses a
strategy to obtain estimation and uncertainty in a simultaneous
MLE manner. However, seen from Fig. 10, it is clear that this
method does not always achieve convergent estimates. Rather,
since there are only three pairs of measurements in each sample,
some of them are almost singular, making the algorithm hard to
converge to a global minimum. The proposed QPEP avoids this
problem, that it first gives global optimal solutions, and then,

7[Online]. Available: https://github.com/dinhhuy2109/python-cope
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Fig. 11. Hand–eye calibration and uncertainty estimation using the proposed
QPEP method.

Fig. 12. Experimental setup and related devices.

estimates the covariance also in a global optimal framework.
The synthetic results also indicate that the QPEP method is
capable of estimating highly accurate pose and covariance even
in the presence of very small numbers of measurements, which
significantly enhances the robustness of the solution.

We then perform a standard industrial hand–eye calibration
experiment, whose setup is shown in Fig. 12. An industrial robot
UR5 and an Intel Realsense D435 camera are attached together.
A gripper is working as an end-effector for grasping objects on
the table. There is a 12× 9 checkerboard as calibration pattern.
The UR5 robot has the positioning accuracy of 3 mm and the co-
variance of the forward kinematics can be gathered statistically.
Fig. 13 shows a view during calibration that illustrates multiple
kinds of features that contribute to camera pose estimation.
Nevertheless, due to the robustness issues, we only use point
features for obtaining camera poses.

Now, the PnP uncertainty analysis is performed. For many PnP
solvers, the covariance information is missing simply because
of sophisticated algorithmic mechanisms. Here, we pick the
EPnP and P3P as candidates for comparison. As is known, the
EPnP can be cast into an eigendecomposition solver, and thus,
the covariance of EPnP is shifted to the uncertainty analysis
of eigenvalue problem. Thanks to Liounis et al., a general
uncertainty framework has been proposed in [63]. For P3P, the

Fig. 13. Segmented multiple types of features during hand–eye calibration
tasks.

Fig. 14. PnP covariance matrices obtained from various methods. The scaling
in this experiment for covariance estimation with (51) is � = 1.0, namely, the
optimization is not scaled.

random sample consensus (RANSAC) is employed for solving
the initial pose from three of the many points and verifying
the pose with another fourth point. Further techniques can
also achieve the maximum sample consensus, e.g., [64]. The
covariance of the P3P is generated using the statistical mean.
We choose inner corners of the 12× 9 checkerboard, so that
88 point correspondences are presented. We use the platform in
Fig. 12 to collect 63 samples. The covariance matrices calculated
using different methods are shown in Fig. 14. In Fig. 14, we only
show 1/100magnitude of the P3P covariance because the actual
covariance of P3P is far larger than others. From the results,
we can see that the eigenvector covariance of EPnP is not so
accurate. The reason is that EPnP is not a global optimal solution.
Yet, the uncertainty description does not consider the constraint
of the system (17), and thus, the covariance estimation is also
nonoptimal.

In fact, the covariance estimation scheme (51) is affected by
different scalings. The results shown in Fig. 14 use the scaling
of � = 1.0, which is unscaled. Using different scalings, we are
able to refine the covariance in a better fashion. Fig. 15 depicts
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Fig. 15. Estimated PnP covariance matrices using QPEP with different scal-
ings.

Fig. 16. Covariance metric values subject to different algorithms and scalings.

the performances with various scalings. One can observe that
when � = 1× 103, the estimated covariance is the best. When
� = 1.2× 102, the covariance bound is a little bit larger than the
statistical covariance. When the practitioners are not sure which
scaling should be selected, the simplified optimization (54) can
be employed. Multiple tests with 4000 different � are conducted,
the metric tr(Σq)/tr(Σq,stat) is proposed for evaluating the
consistency of the estimated covariance with statistical one. The
covariance is regarded as more accurate as � approaches 1. The
results are shown in Fig. 16.

One may see that tuning the scaling may be very difficult
since the curve of the metric values seems very nonlinear with
respect to �. The simplified optimization almost achieves the

Fig. 17. Averaged hand–eye calibration covariance after 10 000 tests.

metric value of 1 and is thus more adaptive and flexible than a
manually tuned one.

Finally, using PnP and hand–eye covariance experiences in-
troduced previously, we can perform a complete uncertainty
propagation for the hand–eye calibration system. Note that in
hand–eye equation AX =XB, A and B are relative poses
from robot kinematics and camera poses, respectively. There-
fore, when the covariance matrices of two camera poses are
obtained, the covariance of B is computed by compounding
two poses and their uncertainty information. This part has
been studied in the supplementary material in the framework
of quaternion. As the performance of Nguyen et al. may not
be satisfactory [46], we compare the results with the method
of Barfoot et al. that propagates uncertainty in a Lie-algebra
framework [42]. From the 63 samples gathered using platform
in Fig. 12, we randomly pick up 10 000 subsets, while in each
subset 30 samples are selected. The second-order and fourth-
order Lie covariance expressions are evaluated for covariance
computation. All covariances are averaged to obtain mean per-
formances. From Fig. 17, it can be seen that, compared with
the statistical one, the QPEP still obtains the best uncertainty
information. The fourth-order Lie method is very close to the
statistical one, but is still not perfect. The second-order Lie
method, according to limited expansion of Lie exponentials,
does not achieve a good uncertainty estimation. The proposed
one is theoretically unbiased and globally optimal according
to its optimization scheme. Another principle for classifying
these candidates is the computational efficiency. The method of
Nguyen et al. [46] has to iterate many times until a convergent
solution. The fourth-order Lie expansion needs much longer for-
mulae for covariance propagation. We compare all these variants
together via C++ codes on the personal computer described in
Section IV-A. Gathered runtime stats are shown in Table IV.
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TABLE IV
RUNTIME PERFORMANCES FOR COVARIANCE ESTIMATION (10 000 CASES)

The results indicate that the QPEP method has a fast com-
putation speed for covariance estimation. It is only a little bit
slower than the second-order Lie method, which is verified to
be not so accurate. The method of Nguyen et al. [46], due
to its iterative nature, is not computationally efficient, and for
real-time applications, the utilization may be limited.

E. Robotic Mapping: Point-to-Plane Registration and RGB-D
Case

RGB-D scene reconstruction is powerful for robotic indoor
navigation and mapping. An RGB-D sensor comprises two
cameras: an RGB one and a depth camera. There are several
emerging issues in RGB-D SLAM to be discussed in this exper-
iment, which are as follows:

1) extrinsic calibration between RGB and depth cameras;
2) motion estimation between successive RGB and depth

frames.
First, the extrinsic calibration between cameras can be re-

garded as an application of the hand–eye calibration. For the
second issue, we present a method that combines the RGB-
Depth motion and depth–depth motion in a hybrid QPEP. Since
from each frame, we can pick up some feature points via
feature extraction techniques, the motion between frames can
be obtained by aligning RGB points and depth point cloud,
namely, PnP. For continuous depth point clouds, we are also
able to register them via 3-D registration. Here, the point-to-
plane metric is chosen since in the indoor environment, there
are many point-to-plane correspondences. A general pipeline
is shown in Fig. 18, from which we can see that each step
related to motion estimation or calibration can be solved by
the proposed QPEP method. We select the ETH3D8 indoor
dataset for illustration. To compare the reconstruction and odom-
etry performances, we pick up the method of bundle adjusted
direct RGB-D SLAM (BADSLAM)9 [65] and RGBD SLAM
v210 [66]. The BADSLAM employs geometric (point-to-plane
depth registration) and photometric (RGB luminous intensity)
errors and bundle adjustment (BA) for refinement of the RGB-
D pose. The BADSLAM does not rely on feature extraction
for each frame, rather, using the direct photometric method,
it can efficiently track nonopportunistic features. The RGBD
SLAM v2 computes the initial pose from epipolar matching
of feature extraction. Then, it verifies the pose via consensus
of successive depth point clouds. In the end, RGBD SLAM v2
refines the odometry via a pose graph. Generally, for most cases,

8[Online]. Available: https://www.eth3d.net
9[Online]. Available: https://github.com/ETH3D/badslam
10[Online]. Available: https://github.com/felixendres/rgbdslam_v2

Fig. 18. Diagram of the developed RGB-D odometry/mapping scheme. The
key steps are as follows. 1. Image transfer to the globally optimal QPEP-based
PnP solver. 2. Depth point cloud transfer to PnP nodes as world points. 3.
Depth point cloud transfer to the globally optimal QPEP-based point-to-plane
registration solver. 4. Depth point cloud for scene stitching. 5. Depth transfer to
hand–eye calibration. 6 and 7. Hand–eye calibration for alignment of depth point
cloud and image. 8. Image transfer to hand–eye calibration. 9. The point-to-plane
solver offers initial guess to PnP solver. 10 and 12. The PnP and point-to-plane
solvers contribute to a hybrid QPEP problem. 11 and 13. Solving a hybrid QPEP
problem with globally optimal solution gives a refined solution for PnP and
point-to-plane registration. 14. The final estimated pose stitches all scenes. The
final step outputs the odometry and mapping results together with uncertainty
description.

BADSLAM is much more reliable and accurate. The reason
is that BADSLAM extracts more substantial information than
RGBD SLAM v2. Also, due to the utilization of the photometric
error, the pose estimation and mapping can be conducted in
real time. However, the BADSLAM also has some problems.
First, the photometric-based optical flow assumes that the gray
scales of the images are invariant, which may not hold in many
applications. Second, it does not consider the unknown extrinsic
calibration between RGB and depth cameras. Third, in the BA
refinement, no covariance information is considered.

Prior to RGB-D scene reconstruction, because both PnP and
hand–eye calibration has been studied in previous subsections,
we take a brief survey of the QPEP performance for solving the
point-to-plane registration. The Stanford bunny and dragon11

laser scans are used for point cloud matching. Multiple datasets
are chosen for inspection. For each pair of point clouds, ten
random initial poses are generated for matching based on the
iterative closest principle [67]. The best alignment is selected
by choosing the one with the least point-to-plane matching
error. Using linear approximation of rotation in (18), which is
extensively used in popular softwares like PCL12 and MATLAB,
together with the developed QPEP method, the registration
results under the point-to-plane metric are shown in Figs. 19
and 20.

It is clear that the QPEP method achieves a better registration
accuracy than the linear approximation. This indicates that the

11[Online]. Available: https://graphics.stanford.edu/data/3Dscanrep
12[Online]. Available: https://github.com/PointCloudLibrary/pcl
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Fig. 19. Point-to-plane registration results using linear approximation and
QPEP. (Upper) Results from bun270.ply/bun315.ply. (Bottom) Results
from bun000.ply/bun045.ply.

Fig. 20. Point-to-plane registration results using linear approximation and
QPEP. (Upper) Results from dragonStandRight_144.ply/dragon
StandRight_168.ply. (Bottom) Results from dragonStandRight_
168.ply/dragonStandRight_192.ply.

globally optimal solution tends to make the system easier to
converge to a global optimum, which also reflects that a linear
approximation of the rotation matrix may not be sufficiently
accurate for matching. Nevertheless, the linear approximation
is more efficient than the QPEP method, which also accelerates
the matching process.

Fig. 21. Reconstructed scenes using proposed QPEP-based pipelines (without
pose graph) and BADSLAM. The upper one is from the plane_scene_1
dataset and the bottom one is from desk_changing_1.

Now that all the key steps in Fig. 18 have been verified to
be effective when solved by the QPEP method. This pipeline
first obtains a bare initial relative pose between depth frames
using the QPEP-based point-to-plane registration. Then, it uses
an approximation of the extrinsic calibration, say the identity
matrix, for mapping the feature points in the RGB image to
the depth frame. This gives rise to further refinement of the
depth point cloud correspondences and extrinsic calibration,
and finally, the PnP correspondences are also refined. For our
method, the maximum iteration for such an interlaced refinement
is set to 10. It is noticeable that the final pose is solved by a hybrid
QPEP that combines the PnP and point-to-plane together. The
globally optimal solution can be easily obtained by using the
solution strategies in Section III-B. Likewise, we also employ
the pose graph for the final refinement of poses, but more
differently, the information matrix between two poses, as can
be interpreted as an inverse of the covariance matrix, is not set
to identity as appeared in many refinement pipelines. We use
the covariance derived from the QPEP to better refine the pose
graph. By picking up ETH3D datasets plane_scene_1 and
desk_changing_1, the reconstruction results using the pro-
posed QPEP method (without pose graph) and the BADSLAM
are shown in Fig. 21. The QPEP (without pose graph) results in
Fig. 21 are a little bit noisy as compared with that of BADSLAM.
This is caused by inevitable noise in the measurement but we
still can see that the QPEP method already achieves good initial
poses that to be refined by the pose graph (see Fig. 22). In Fig. 23,
we show such refined poses in comparison with representatives.
When building up the pose graph, loop detection using features
has been employed [68], namely the FBoW13 library. In the fig-
ure, the camera poses denote the selected keyframes according
to the motion modal.

After a pose graph optimization (PGO) with covariance infor-
mation from the QPEP, the refined trajectory almost coincides
with the ground truth, which is slightly better than nonweighted

13[Online]. Available: https://github.com/rmsalinas/fbow
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Fig. 22. Reconstructed scenes using proposed QPEP-based pipelines (with
pose graph) and BADSLAM. The datasets are the same in Fig. 21.

Fig. 23. RGB-D poses of different methods for dataset plane_scene_1.

BA from BADSLAM. The PGO can quickly converge to an
optimal value within 0.01 s with given initial estimate from
QPEP pipeline. BADSLAM may fail when the gray-scale as-
sumption is broken. A typical example is the ETH3D dataset
desk_2, whose results are presented in Fig. 24. In the initial
stage, BADSLAM works well with the input data. However,
it diverges since the position indicated by the arrow and never
converges again. The root mean-squared errors (RMSEs) of the
trajectory for various methods are shown in Table V. In the table,
the black bold figures denote the best method, while the blue bold
figures denotes the second best algorithm. BADSLAM combines
the geometric and photometric errors in one unified error metric
and solves it by nonlinear optimization. When one of these errors
degenerates, the entire optimization may also degrade, leading

Fig. 24. RGB-D poses of different methods for dataset desk_2.

TABLE V
RMSES OF TRAJECTORIES FOR DATASET plane_scene_1 AND desk_2

TABLE VI
COMPUTATIONAL EFFICIENCY OF RGBD METHODS

to unexpected crash. In our pipeline shown in Fig. 18, each key
step can be verified by interlaced checking, thus makes the final
results much more reliable. The flexibility of solving ad hoc
QPEPs as an entirely hybrid one also gives convenience to the
implementation and verification, which does not require those
sophisticated operations like online numerical Jacobian compu-
tation. The computational efficiency of various method has been
summarized in Table VI, where the single-frame statistics are
obtained in average using a dataset with 4 512 images. One may
observe that the proposed QPEP with PGO is slightly slower than
BADSLAM with BA. The reason is that BADSLAM utilizes
the photometric error, which is fundamentally faster than the
feature-matching method employed in the QPEP-based RGBD
SLAM.
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V. CONCLUSION

In this article, many important pose estimation problems were
revisited. They were unified as QPEPs. We showed that although
the estimation was nonconvex, globally optimal solutions can
be obtained with efficient approaches. We also gave solvabil-
ity/observability analysis and optimal uncertainty description
of the derived solutions. The proposed method was verified to
be accurate and efficient for solving many problems including
PnP, hand–eye calibration, point-to-plane registration, etc. The
capability of solving hybrid QPEPs also gave rise to a new
effective scheme of the RGB-D scene reconstruction. The gen-
erality of the proposed method gave a universal tool for solving
many robotic pose estimation problems and can be a candidate
for real-time applications. However, we also observed that the
proposed method was inevitably slower than some compared
candidates. The computational burden of the proposed method
is expected to be optimized in the near future.

From (17), one can see that the kernel problem of solving
QPEPs is the solution to polynomial equations. It was also shown
that (17) is an eigenvalue problem. In the future, we will pay
our efforts to finding more efficient solvers of these problems.
Moreover, from the derived quaternion-only equation (24), if
one solves it again using the gradient-descent method, a new
equation of higher order will be generated. This equation has
the same subset of solutions with (17). That is to say, there
is a passage of roots between lower order and higher order
polynomial systems, which may be quite essential for elegant
solution of such problems by order reduction.
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