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Abstract— Robot navigation in human crowds remains the
challenge of understanding human behaviors in different sce-
narios. We present an approach for interactive and human-
friendly crowd navigation in complex static environments.
The planner models the online interactions among the robot,
humans, and the static environment based on game theory. It
recurrently expands and optimizes the estimated trajectories for
the robot and neighboring agents and provides human-friendly
navigation commands. We use various indicators to evaluate
the social awareness of the planners and show that our method
outperforms existing approaches in success rate to reach the
goals and compatibility with humans while maintaining low
navigation times. The planner is successfully deployed on a real-
world quadrupedal robot, demonstrating safe and interactive
crowd navigation with real-time performance.

I. INTRODUCTION

Robot navigation with mobile agents in constrained static
environments requires the cooperation of individuals [1] and
requires the robot to capture crowd interactions for safe
and cooperative movements. Although a massive amount of
research has been conducted on the socially aware navigation
problem, challenges arise from the prediction and planning,
behavior modeling, and choice of evaluation method [2].

Reactive-based, optimization-based, and learning-based
approaches are widely applied to solve crowd navigation
problems [3]. Reactive-based approaches only consider the
instant agent states, which results in unsatisfactory perfor-
mance. Optimization-based approaches first predict human
trajectories using physical models or data-driven methods,
then plan and optimize the path for the ego agent. However,
the decoupled planning and prediction process assumes ”non-
responsive crowds”, which leads to unnatural robot actions or
failure to find a feasible path [2]. The proposed optimization-
based approach regards crowd navigation as a successive
decision-making procedure. It iteratively estimates the online
interaction among robot, humans, and static environment
within a specific time horizon in each planning loop, which
captures the robot’s impact on the crowd. Learning-based
approaches implicitly model the agents’ relationships, which
achieve high success rate and low travel time [4], [5].
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Fig. 1: The proposed local planner performs online interaction
estimation with mobile agents and the static environment, providing
efficient and cooperative crowd navigation solutions that fully
utilize the agile motion capabilities of quadrupedal robots in highly
dynamic scenarios.

However, they either only focus on open area scenarios [4]–
[7] or often fail in long-range applications [8], [9].

Game theory is adopted in various robotic applications in-
cluding competitive racing [10], [11] and autonomous driving
[12]–[14]. However, they heavily rely on the quality of initial
trajectories in complex scenarios for convergence. In this
paper, we leverage the advantage of game theory in modeling
multi-agent relationships and apply it in interactive crowd
navigation scenarios of quadrupedal robots. Our approach
(GTICN) is proposed to provide robust and human-friendly
commands without requiring initial trajectories of agents and
take full advantage of the robot’s agile motion capabilities.
We deploy our planner on a quadrupedal robot to demon-
strate its agile collision avoidance and interactive navigation
capabilities (Fig. 1). Our main contributions include:

• A local path planner that fully utilizes the agile mo-
tion abilities of quadrupedal robots to perform human-
friendly crowd navigation.

• An approach that estimates the online crowd interaction
in complex environments based on game theory and
incentive force model.

• Extensive evaluations of the planning performance with
multiple criteria to measure the robot’s impact on the
crowd and its compatibility with humans.

• Real-world demonstrations of the proposed planner on a
quadrupedal robot for human-friendly crowd navigation
with real-time performance.

II. RELATED WORK

A. Traditional Model-based Approaches

Reactive-based approaches understand the crowd as a
group of individuals, as is done by Optimal Reciprocal Col-



lision Avoidance (ORCA) [15] and the Social Force Model
(SFM) [16]. Their variants are widely adopted in autonomous
navigation [17]–[20], pedestrian simulation [21]–[23], and
crowd evacuation [24], [25]. Optimization approaches are
also applied for crowd navigation, including Timed Elastic
Band (TEB) [26], [27] using the g2o-framework [28] and
predictive methods using Model Predictive Control (MPC)
[3], [29], [30]. However, they seldom consider the impact
of the robot on the interactions. Khambhaita and Alami
[1] introduce an online approach that plans TEBs for both
the robot and humans to achieve cooperative navigation.
Nishimura et al. [31] sample human trajectories using Tra-
jectron++ [32] to obtain robot-conditional predictions for
planning. Our approach extends the SFM into the ”incentive
force model” and further introduces game theory to path
optimization to better capture the crowd interactions for
human-friendly motions.

B. Learning-based Approaches

Learning-based approaches are also widely applied in
robotic crowd navigation. Reinforcement learning (RL) is
used to directly obtain crowd navigation policies. Chen et al.
train CADRL [6] under the reciprocity assumption for inter-
active behaviors and achieve social awareness by rewarding
the policy with social norms [7]. Attention mechanisms and
graph structures are then introduced in [4], [5], [33] to encode
the inter-agent relations better. However, these policy net-
works are normally trained in open areas and ignore possible
interactions with the static environment. Liu et al. [8] extend
SARL [4] by additionally observing the occupancy map,
while Dugas et al. [9] further improve it by introducing
the transformer architecture. Deep learning can also predict
human trajectories using data-driven regressions [34], [35]
or generative approaches [36]. The model proposed in [34]
is further integrated with an RL policy in a decoupled way
to generate motion commands [37]. However, learning-based
approaches are still not guaranteed to perform well outside
the training scenarios [38]. Our method provides robust
performance in complex static environments while maintain-
ing high navigation efficiency compared with learning-based
approaches.

C. Game-theoretic Approaches

Game theory is increasingly adopted in robotic applica-
tions. It is competent to model the behaviors of individuals in
a multi-agent system and has been used in double [39]–[41]
or multi-agent [10], [11] competitive scenarios. Williams et
al. [42] use the Iterated Best Response (IBR) approach to
capture the agile interactions between autonomous vehicles.
Fridovich-Keil et al. [12], [13] propose iLQGames to ap-
proach the local Nash equilibrium for traffic simulation and
motion planning. Cleac’h et al. [14] present an augmented
Lagrangian solver and adopt it in autonomous driving. How-
ever, it’s essential to obtain good initial paths for agents to
find a feasible solution. In addition, they typically simplify
robots as circles to achieve a rational computation time.
We modify the IBR algorithm to integrate the trajectory

Fig. 2: The planner alternately expands and optimizes the tra-
jectories for the robot (in red) and related agents to their goals
(circled dots) using game theory. The trajectories are the interaction
estimations considering the impact of the robot and static structures.

expansion and optimization procedures, which releases the
requirement on the initial path. Our approach achieves a
high success rate in finding feasible solutions even in highly
dynamic scenarios with complex static structures. It also
better captures the robot’s geometric shape to further im-
prove the navigation efficiency without introducing a heavy
computational burden.

III. APPROACH

The proposed planner couples the expansion and optimiza-
tion phases. Each loop performs one-step-ahead expansion
and trajectory optimization alternately for robot and related
agents using the incentive force model (Section III-B) until
the trajectories expand to a specific time horizon and reach
stable equilibria (Fig. 2). The robot takes the first step on its
trajectory and repeats the process in the next loop.

A. Problem Formulation

The human state qh ∈ Qh contains the current position
p = [px, py]

T , linear velocity v = [vx, vy]
T , and the goal

g = [gx, gy]
T in the world frame. Each human has a circular

body with a radius r and a preferred walking speed vp:

Qh = {qh|qh = [pT , vT , gT r, vp]
T }, (1)

where p, v, and r are observable. The robot is considered
rectangular with length=2rl and width=2rw. Its state qr ∈
Qr also contains an orientation ψ and an angular velocity ω:

Qr = {qr|qr = [pT , vT , gT , ψ, ω, rl, rw, vp]
T }. (2)

In each planning loop, the planner gradually expands and
optimizes the trajectories of the robot and its neighbors from
the current time step t = 0 to a horizon ξ. The trajectory
Pi = [q0

i , q
1
i , . . . , q

l
i] of agent i comprises sequential agent

states qti with a constant time interval τ between them. We
approximate a linear motion between qt−1

i and qti, and define
vti , ω

t
i to be the end velocities of the previous motion:

pti − pt−1
i = vtiτ, ψ

t
i − ψt−1

i = ωtiτ. (3)

We model the crowd navigation problem as an N-person
ξ-stage infinite dynamic game. The Nash equilibrium is



regarded as an optimal form of the multi-agent system, where
the navigation costs Ji satisfy the following inequality [43]:

Ji(P
∗
0 ; ... P

∗
i ; ... P

∗
N ) ⩽ Ji(P

∗
0 ; ... Pi; ... P

∗
N ), ∀i ∈ N.

(4)
A group of strategies reaches the Nash equilibrium if none

of the agents has the incentive to deviate from its strategy
unless its neighbors do [43]. Therefore, we define the incen-
tive force models, where the composition of the translational
and the rotational forces fT (q

t
i) = [fTx(q

t
i), fTy(q

t
i)]
T and

hR(q
t
i) can be interpreted as the motion incentives of agents.

The social navigation cost Ji is thus the potential energy of
states in the field that described by fT (q

t
i):

fTx(q
t
i) =

δJi
δptxi

, fTy(q
t
i) =

δJi
δptyi

, hR(q
t
i) =

δJi
δψti

. (5)

The forces on each agent state at any time step are
independent and are calculated w.r.t its current pose only. The
planner approximates the Nash equilibrium by optimizing the
positions pi and orientations ψi of the trajectory states:

P ∗
i = argmin

pt
i, ψ

t
i

Ji(P0; ...q
t−1
i , qti,q

t+1
i , ... PN ), ∀t ∈ ξ.

(6)

B. Force Models and Constraints

The proposed method references the SFM [16] and TEB
[26] to represent the influence of the static environment, the
other agents at the same time step, and the self-states from
the adjacent steps on a specific agent state (Fig. 3). Each
agent state is incentivized by the composition of forces while
satisfying several constraints. For each type of incentive,
the planner calculates the translational force ft and the
rotational force hr, whose signs denote their directions. For
the interactive forces, i denotes the agent who receives the
force and j denotes the agent who exerts the force on i.

1) Goal Attraction: The translational attractive force ftg
is applied to accelerate the robot to a preferred velocity vpref

to approach the temporary goal g:

vpref
t
i = vpi

gt−1
i − pt−1

i

||gt−1
i − pt−1

i ||2
, ftg(q

t
i) =

vpref
t
i − vti
τ

.

(7)
To present a clear intention to humans, the rotational attrac-
tive force hrg follows the translation direction of the robot:

hrg(q
t
i) =

arctan (vtyi/v
t
xi)− ψti

τ
. (8)

2) Collision Avoidance Constraints: We adopt the cost
function from [26] to model the constraints of agents:

cΓ(a, ar, ϵ, S, n) =

(
a− (ar − ϵ)

S

)n
if a > ar − ϵ else 0,

(9)
where ar is the bound, ϵ, S, and n affect the approximation,
scaling, and polynomial order [26]. ftb denotes the transla-
tional repulsive force from dynamic agents:

ftb(q
t
i,q

t
j) = −∇cp

(
−dtij ,−(ri + rj), ϵ, S, n

)
, (10)

Fig. 3: The planner optimizes the robot poses by minimizing
the incentive forces which model the influence from the static
environment (yellow squares), other dynamic agents qt

j , and the
adjacent self-states qt±1

i .

where dtij is the distance between agents i and j at step t.
When the robot rotates, we consider ri w.r.t j as a variable:

ri = min

(
rw

sin |θtij |
,
√
r2w + r2l

)
, θtij ∈ [0, π], (11)

where θtij is the angle between ptj−pti and ψt. The rotational
repulsive forces hrb and hrβ are also formulated as Eq. 10,
where we obtain the gradient w.r.t ψi through the chain rule.

The planner uses the Euclidean Distance Field (EDF) to
understand the complex static environments, with rj replaced
by an inflation distance ro. We obtain ftβ(q

t
i) by calculating

the 2D map gradients. For the robot, we adopt a ”two-circle”
footprint with a front center qfront and a rear center qrear
both having radius rw. We define the robot’s ftβ as the mean
of the respective repulsive forces and hrβ as the tangential
component of the half-difference between them.

3) Velocity and Acceleration Constraints: The cost func-
tion in Eq. 9 also limits the positional difference between
qti and qt−1

i to fulfill the motion constraints. Therefore, we
formulate the translational constraint forces ftv and fta:

ftv(q
t
i) = −∇cv(||qti − qt−1

i ||2, vmaxτ, ϵ, S, n), (12)

fta(q
t
i) = −∇ca(||vti − vt−1

i ||2, amaxτ, ϵ, S, n). (13)

The angular forces hrω and hrα are also obtained similarly.
4) Trajectory Smoothing: The position and velocity tran-

sitions between adjacent states are smoothed using the cost
ctt = ||pti−pt−1

i ||22. A variation of a state position will affect
the costs of its previous and next motions, so we obtain the
translational smoothing force fts:

fts(q
t
i) = −∇(ctt + ct+1

t ). (14)

Similarly, we define hrs to smooth the orientation changes,
where the rotational cost cr and hrs are:

ctr = |ψt − ψt−1|2, hrs(qti) = −∇(ctr + ct+1
r ). (15)

5) Composition of Forces: The overall motion incentive
of a state qti is the composition of forces it receives, where
N is the number of dynamic agents in the perception range:

fT (q
t
i) = ftg(q

t
i) +

N∑
j=1

ftb(q
t
i,q

t
j) + ftβ(q

t
i)

+ ftv(q
t
i) + fta(q

t
i) + fts(q

t
i),

(16)



hR(q
t
i) = hrg(q

t
i) +

N∑
j=1

hrb(q
t
i,q

t
j) + hrβ(q

t
i)

+ hrω(q
t
i) + hrα(q

t
i) + hrs(q

t
i).

(17)

C. Coupled Expansion and Optimization

The planner adopts a coupled scheme for trajectory ex-
pansion and optimization, where the two phases operate
alternately and expand the trajectories gradually to a horizon.

1) Expansion Phase: In expansion phases, the planner
finds the k-th nearest global path point ahead of the current
end state as the temporary goal, while k affects how strictly
the planner follows the global plan. For humans, we take a
normal walking speed as their vp and estimate their goals
through linear propagation. From the current end state qli,
the expansion phase takes the initial guess of the next step
based on the attractive and repulsive forces received by qli.
To provide a good initial guess for the expansion, the planner
adopts the collision prediction model [21] to calculate ftb:

ftb(q
t
i,q

t
j) =

||vti ||2
ti

e−d
t
ij/b

ptj(ti)− pti(ti)

||ptj(ti)− pti(ti)||2
, (18)

where b is the interaction range, ti is the ”collision time”
defined in [21], and pt(ti) is the linearly propagated position
after ti. We assign a higher priority for reaching the goal than
maintaining the path smoothness, so the smoothing force
is excluded from the expansion phase and the trajectory
can automatically adapt to the growth during optimization.
Therefore, we obtain the translational expansion force fE and
plan the position of ql+1

i based on the agent dynamics:

fE(q
l
i) = ftg(q

l
i) +

N∑
j=1

ftb(q
t
i,q

l
j) + ftβ(q

l
i), (19)

vl+1
i = vli + τ fE(q

l
i), pl+1

i = pli + τvl+1
i , (20)

where we clamp the growth length to fulfill the velocity
and acceleration constraints of the new state. The orientation
ψl+1
i of the new state is obtained using the same approach.
2) Optimization Phase: Although we assume that all the

agents behave rationally and interactively, as they move in
a non-communicative scenario, the expansions may be sub-
optimal or even lead to collisions. Therefore, the trajectories
are further optimized after each expansion through iterative
gradient descent, where ftg is only applied on the current
end state of the trajectory to provide more freedom to the
collision avoidance. In each iteration, the poses are updated
by taking a small step along with the composition of forces
they receive with a stepping rate γ ∈ (0, 1]:

pti ← pti + γfT (q
t
i), ψ

t
i ← ψti + γhR(q

t
i). (21)

In this way, a single state exerts influence on its neighboring
agents at the same step through the repulsive force, while
also affecting its own previous states through the smoothing
process. This is how we achieve online interaction estimation
with the neighboring agents. We note that the planner aims
to provide a human-friendly navigation solution rather than
focusing on accurately predicting human actions. The real

Algorithm 1: Game-Theoretic Interactive Crowd Navigation
Input: self state q0

i and neighbor-agent states {q0
j}

Output: motion command v1
i and ω1

i

1: Expand one step q1 for i and {j} (Eq. 20)
2: for iteration = 1, 2, ... do
3: while not converged do
4: Calculate fT (q

t) and hR(qt) for t = 1 : l
5: Optimize and update trajectories (Eq. 21)
6: if l + 1 < horizon ξ then
7: Expand one step ql+1 for i and {j} (Eq. 20)
8: return the first action v1

i and ω1
i

actions of neighboring agents may be different from the
estimated states. However, the ”feedback nature” of the
receding horizon assists the planner in reacting to possible
changes in human intentions and avoiding collisions [11].

After the trajectories converge, the expansion phase takes
another group of initial guesses and expands the trajectories.
Then the optimization phase again iteratively adjusts them
until they reach a new equilibrium. The above process is
continuously operated in a single loop until the trajectories
reach a certain horizon at which the planner takes the first
step v1

i , ω1
i of its trajectory Pi as the motion command. The

pseudo-code of a planning loop is presented in Algorithm 1.

IV. EXPERIMENTS

A. Setup

We test the proposed planner in various simulated and
real-world environments. As suggested by [22], we set an
appropriate time horizon τξ = 3s and interval τ = 0.25s to
capture the crowd interactions while maintaining a rational
computational burden. The planner takes a 10 × 10m oc-
cupancy map to construct EDF with a resolution of 0.08m
and receives the observable states of the neighboring agents
within 5.0m. We compare the success rate RS , average time
TR for the robot to reach the goal, and the average velocity
change ∆VR, which indicates the motion smoothness. As
we focus on providing human-friendly navigation solutions,
we also analyze the average crowd time TC for all agents
to reach their goals, ∆VC that reflects the robot’s impact
on human actions, and the average minimum separation rate
SM . We also introduce the average directional cost CD in [1]
as a measure of human compatibility with the robot, while
CD is high if the robot and the human are moving towards
each other at a small distance and high speed:

SMij =
||p0

j − p0
i ||2

ri + rj
, (22)

CDij =
SMij

SMij − 1
·
v0
i · (p0

j − p0
i ) + v0

j · (p0
i − p0

j )

||p0
j − p0

i ||22
, (23)

where we use the boundary distance and the variable robot
radius in Eq. 11 to calculate SM and CD for agents with dif-
ferent radii. For planners without orientation optimizations,
the robot’s orientations simply follow the moving directions.



Fig. 4: An example of the resulting paths in experiment one. The robot (red) moves through the crowd from top to the goal at the bottom.
Both versions of our GTICN approach provide smooth paths in rational travel times without significantly disturbing human behaviors.

Fig. 5: Examples in obstacle-avoidance (a–c) and crossroads (d–f). Our approaches capture the crowd interaction with the static environment
for efficient and smooth navigation. The travel time is further reduced by optimizing the robot’s orientations in our full version.

First, we evaluate the crowd navigation performance in
the simulated open area scenario. The robot is 1.0 × 0.5m
in shape with vp = 1.5m/s, while each neighboring agent
is randomly assigned a radius r ∈ [0.3, 0.5]m and a vp ∈
[1.0, 1.5]m/s. We prepare 2000 scenarios, with each con-
taining eight agents with randomly assigned initial positions
and goals around a circular region and with travel distances
that are four times their vp. The interactive humans use the
ORCA algorithm that tries to keep a 0.1m distance from
the robot and other agents, while one of the humans adopts
the ”invisible robot” setting to increase the crowd uncer-
tainty. We evaluate our approach (GTICN) while choosing
CADRL [6], which is a cooperative RL policy for crowd
navigation, and the SARL [4] and RGL [5] policies, which
respectively use a self-attention mechanism and relational
graph to capture the crowd-robot interaction, for comparison.
CADRL, SARL, and RGL are trained using the simulator in
[5] with holonomic kinematics, and the r and vp of agents
are randomized using the experiment settings. We further
implement GTICNCir, which assumes a circular robot, to
show our advantage of capturing the robot’s geometric shape.

The next experiment contains both humans and static
structures, while r and vp are randomized in the same way.
Two scenarios are used to set up the static environment:
In the first scenario, the agents perform obstacle-avoidance
in a map with static objects, while the robot and another
five agents manage to move from one side to the other side
around a 4.0m circle (Fig. 5 (a–c)). The second scenario is
set at a crossroads with the road width=3.0m, and where we
randomly set the robot and another five agents to move from
one of the entrances to another (Fig. 5 (d–f)). Both scenarios
are tested on 150 sets of agents with different start and goal
positions. We use GTICNCir to simulate the predictive and
interactive behavior of humans in static environments, while

all the agents still operate in a decentralized way without
communication. We compare our approach with the TEB
[26] local planner that assumes a constant velocity model for
dynamic obstacles. The TEB uses holonomic kinematics and
adopts a ’two-circle’ footprint for the robot. All the agents
take way-points from a simple A* global planner.

In real-world experiments, we deploy GTICN on a Jueying
Mini [44] quadrupedal robot. The planner runs onboard
at 5Hz on an Intel i7-7600U. The robot receives its own
odometry and that of its neighboring agents through an
external OptiTrack motion capture system, while humans
are set to have r = 0.3m. We conduct experiments in three
scenarios: the ”random-walk” where four people randomly
walk around the robot to reach their targets, the ”box-relay”
where four people randomly pass on two boxes, and the
”corridor” where the robot moves with humans along a
2.2m-width corridor around the planning region. In the first
two scenarios, the robot tries to move between the top-left
and the bottom-right corner and interacts with humans. In the
”corridor” environment, the robot moves along a U-shaped
path between the top-left and the top-right corner.

B. Results

Table I and Fig. 6 show the average performance of the
planners in the first experiment. CADRL achieves short travel
times, but the low social separation SM and high directional
cost CD indicate low compatibility with humans. SARL and
RGL passively avoid humans, which results in low crowd
travel times, but the high ∆VR may cause disturbance to
humans in real-world applications. Our GTICNCir approach
stably performs human-friendly motions by maintaining high
social distances, smooth velocity transitions, and low direc-
tion costs, while our full version (GTICN) further improves
travel efficiency and achieves a higher success rate RS .



TABLE I: Average Performance in the Open Area.

Local RS TR TC ∆VR ∆VC SM CD

planners (%) (s) (s) (m/s2) (m/s2) (1) (1)

CADRL 92.05 5.59 9.78 1.78 0.54 1.14 4.67
SARL 95.85 5.92 9.12 2.79 0.54 1.21 3.64
RGL 98.50 5.62 8.88 2.18 0.52 1.26 3.42

GTICNCir 97.45 6.26 9.34 1.06 0.49 1.28 2.52
GTICN 98.50 5.60 9.25 0.89 0.49 1.32 2.71

Fig. 6: The average performance of the tested planners in the first
experiment. Our approach stably provides interactive navigation
solutions with longer social distances, smoother velocity transitions,
and higher human compatibility, while also achieving a high navi-
gation efficiency as it better captures the robot’s geometric shape.

We further visualize one of the planning results as an
example in Fig. 4. Although the CADRL policy takes the
minimum time to reach the goal, it apparently affects the
behavior of the agent in orange. Both versions of our
approach keep a low level of influence on the crowd while
the resulting robot paths are much smoother compared with
other planners. This indicates that our approach assists the
robot to present clear motion intentions to humans without
bringing disturbance or inconvenience to them.

Table II presents the results of the second experiment,
where the top three rows are from the obstacle-avoidance
scenario and the bottom rows are from the crossroads. Both
versions of our approach have a high success rate and achieve
a high navigation efficiency with shorter travel times. In
addition, they provide smooth transitions with a lower ∆VR
and maintain better human compatibility. The TEB planner
often suffers from the ”freezing robot” problem because it
assumes a constant velocity model for agents and fails to find
feasible solutions in these highly dynamic scenarios, which
results in a low success rate and long travel times. Fig. 5
presents visualizations of the planning results.

Finally, we deploy the GTICN planner on a quadrupedal
robot in real-world experiments. The robot presents interac-
tive and human-friendly motions during multiple repetitions.
The planner shows cooperative behaviors when a human
overtakes or meets the robot in the corridor environment
(Fig. 1). It can also handle different crowd motion patterns
in the ”random-walk” and the ”box-relay” scenarios (Fig. 7)

so that humans can safely concentrate on their own actions.
Even when the humans have uncooperative actions, the robot
can still promptly adjust itself and avoid potential collisions,
which presents the feedback capability of our approach.

TABLE II: Average Performance with Static Structures.

Local RS TR TC ∆VR ∆VC SM CD

planners (%) (s) (s) (m/s2) (m/s2) (1) (1)

TEB 76.67 12.08 15.67 2.46 0.72 1.33 3.22
GTICNCir 94.67 9.05 15.66 0.67 0.70 1.26 2.21

GTICN 99.33 8.57 15.64 0.68 0.65 1.27 2.12
TEB 86.67 8.09 12.52 1.98 0.76 1.33 3.18

GTICNCir 98.00 7.65 11.85 0.78 0.81 1.32 2.01
GTICN 99.33 6.78 11.36 0.84 0.73 1.37 2.19

Fig. 7: Real-world experiment in the ”box-relay” scenario. The
robot safely moves through the crowd which has complex motion
patterns without introducing apparent disturbances to the humans.

V. CONCLUSION

We presented an approach for interactive crowd navigation
in complex static environments. It models the agents’ behav-
iors based on the Nash equilibrium and adopts integrated
trajectory expansion and optimization phases to estimate
the online interaction among the mobile agents and the
static environment. The planner was evaluated in various
dynamic scenarios using multiple social-awareness indica-
tors, presenting efficient, safe, and interactive navigation
that outperformed the existing approaches. We successfully
deployed the planner on a quadrupedal robot in the real
world. The planner performed human-friendly navigation
with real-time performance, demonstrating its potential in
developing vast human-interactive applications.
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