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Abstract— Traffic lights are important components of traffic
systems, and perceptual tasks on traffic lights are crucial for
intelligent agents on the road. Auxiliary countdown timers,
providing the remaining time of the current traffic phase, improve
the safety and smoothness of the entire traffic system. This
work proposes a state estimation framework for countdown timer
traffic lights. Time-domain information is adequately integrated
into a variable transition Hidden Markov Model (VT-HMM), and
our system provides optimal estimates of traffic light colors and
countdown numbers based on noisy detection inputs. A dynamic
state transition matrix is designed based on a 1-step transition
logic and a probability of the number of transitions related to
the current state sojourn duration. A recursive decoding method
based on the Viterbi algorithm is proposed to update all the
state candidates and select the optimal state chain. Extensive
experiments evaluate the robustness and effectiveness of the
proposed work. The performance boundaries of this system are
also found under various input noise levels. The source code is
available here: https://github.com/ShuyangUni/countdown-timer-
traffic-light-estimation

Index Terms— State estimation, countdown timer traffic light,
hidden semi-Markov Model, probabilistic model, autonomous
driving.

I. INTRODUCTION

TRAFFIC light perception is fundamental but indispens-
able for autonomous driving. Like other traffic partic-

ipants, autonomous vehicles recognize traffic indications to
ensure their safety and smoothness in traffic flows. V2X
(Vehicle-to-Everything) traffic lights, aiming to solve traffic
light perception tasks by transforming these tasks into robust
V2X communication [1], [2], [3], [4], are the current devel-
opment trend. However, V2X traffic lights, suffering from
their expensive retrofit costs, have the challenge of becoming
popular in recent years. High-performance vehicle-end traffic
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Fig. 1. Various traffic lights. (a) Traditional traffic lights only provide
instantaneous hints. (b) Countdown timers provide the remaining time for
current color phase.

light perception modules will still dominate the field in the
future.

Traditional traffic lights (Fig. 1a) only provide move and
stop signals. Drivers wait for green lights and react after color
switching. The brief pauses accumulated by their reactions in
queues eventually cause traffic jams [5], [6].

Traffic lights with countdown timers (Fig. 1b), providing the
rest time (in seconds) before traffic signal shifting, bring more
benefits than the traditional ones. Red countdown displays
cause seemingly less waiting time and help ease human driver
anxiety [7], [8]. Green countdown signals allow drivers to
make precise decisions on whether to stop before the traffic
lights or pass through the intersection [9], [10], which finally
reduces red light and yellow light violations. Meanwhile,
human drives smarter with the help of countdown timers.
Without violating traffic rules, human drivers release the
brakes just before the end of red signals and have already
speeded up when green signals arrive. The ability to respond
in advance shortens the reaction time, significantly improving
the efficiency of traffic systems and easing the formation of
traffic jams. Autonomous vehicles can mimic human driving
behaviors by sensing countdown timers. With a countdown
time estimator, autonomous vehicles can also launch early and
pass the stop line precisely at the arrival of the green light.
Autonomous vehicles can be more intelligent and elegant like
humans when placed in scenarios containing countdown timer
traffic lights.
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Fig. 2. Various digit patterns of countdown timer traffic lights. (a) null on
tens place. (b) 0 on tens place. (c) Color ends with 1. (d) Color ends with 0.

State estimation for countdown timer traffic lights faces
several challenges. The system logics are complex. Tradi-
tional traffic lights only provide color transition logic (red →

green → yellow → red), while countdown timers provide
underlying countdown information. After status shifting, we
implicitly know the next transition will happen in about 1 sec-
ond. Meanwhile, the countdown timer resets to an unknown
value after color shifting. It is not easy to integrate these logics
into a system using the language of probability. There are
various temporal patterns. When displaying numbers less
than 10, some countdown timers show nothing on tens place
(Fig. 2a). Others replace the null displays with 0 (Fig. 2b).
Some countdown timers terminate a color at 1 (Fig. 2c),
and others end at 0 (Fig. 2d). It is challenging to design
a system that adapts to the diversity of temporal patterns.
There are more input errors. Errors from detection, reflected
in the sizes and offsets of bounding boxes, seldom affect
color classification in traditional traffic light systems. However,
traffic light systems with countdown timers have extra digit
classification sub-tasks, of which the pixel-level offsets may
cause digit misclassification. Meanwhile, lighting conditions
and motion blur increase the challenge of digit classification
but rarely affects color classification. It is more challenging to
consider the input errors from the digit classification sub-task
than traditional traffic light systems.

In this work, we propose a state estimator for countdown
timer traffic lights modeling by a Hidden semi-Markov Model
(HSMM) to tackle the abovementioned challenges. Our system
presents the following contributions:

1) An HSMM-based state estimator, which is a general
framework for countdown timer traffic lights with vari-
ous patterns (Section V). To the best of our knowledge,
this paper is the first work on state estimation tasks for
countdown timer traffic lights using temporal modeling.

2) Dynamic state transition modeling, which establishes
the relationship between transition probability and state
sojourn duration by a start time distribution (Section VI).

3) A recursive decoding method extended from the Viterbi
algorithm, which updates the optimal chains for all state
candidates and their corresponding start time distribu-
tions iteratively (Section VII).

II. RELATED WORK

A. Traffic Light Perception in One Shot

From the perspective of computer vision, traffic light per-
ception consists of two subtasks. One is traffic light detection,
locating the device’s position in each image frame. Another is
traffic signal recognition, which recognizes control signals.

Traditional traffic light detection methods depended on color
segmentation [11], [12], morphological characteristics [13],

[14], or their combinations [15], [16]. Structured global fea-
tures, such as Histogram of Oriented Gradients (HOG) [17],
[18], Hough Transform [19], and self-defined templates [13],
[20], are also selected in traditional machine learning frame-
works. Deep learning techniques [21], [22], [23], [24], [25]
were involved in traffic light detection tasks as well. Additional
information, such as offline prior maps [19], [26], [27], [28]
and configuration files [29], provides precise prior locations of
traffic lights and significantly reduces difficulty under complex
urban scenarios.

Traffic signal recognition is considered as a classifica-
tion task in computer vision. Color space is the most cru-
cial feature in distinguishing signals. RGB color space was
commonly used, while other color spaces, such as Hue-
Saturation-Value (HSV) [15], [18], [30], YUV [29], [31],
and YCbCr [16], were selected to handle the luminance and
chrominance separately. Signal status is defined according to
the system design. In addition to the original three signal
statuses (red, green and yellow/amber), the status off [14],
[21] was added when traffic lights are turned off. A status
red/amber [14] was considered for the alternate blinks. The
not-detected status N.D. [30], or the background status back-
ground [21] was set for false recognition cases. Classifiers
were also differently implemented, including color thresh-
olds [12], [15], [29], [30], SVM [32], and AdaBoost [15].
CNN-based classifiers [18], [21], [24], benefiting from increas-
ing datasets, provide higher precision than traditional ones.

Traffic light perception methods using a single image can-
not provide temporally stable outputs. Results from different
images give inconsistent detection outputs, and it is difficult
to decide which outcome to trust. Our method estimates the
traffic light signals using all the countdown observations and
provides the optimal estimation over an entire image sequence.

B. Traffic Light Perception in Image Sequence

Temporal information from image sequences enhances the
stability of traffic light detection in the time domain. Track-
ers attached after detectors provide temporal priors [15],
[27], [14], [21]. Nienhüser et al. [14] considered the traffic
light association and update into a multiple object track-
ing (MOT) problem. Gong et al. [15] adopted Continuously
Adaptive Mean Shift (CAMSHIFT) to track traffic lights.
Levinson et al. [27] modeled perceptual offsets using the
Gaussian motion model and updated the belief under a his-
togram filter framework. Behrendt et al. [21] employed an
odometry-based motion model and tracked traffic devices by
a neural network.

Image sequences also enhance the classification accuracy
of traffic signals. Temporal cues establish the connection of
adjacent statuses and reduce misclassifications. Meanwhile,
specific patterns in the time domain (such as blinking [14])
can only be defined in image sequences. Trehard et al. [33]
considered the detection and recognition of each traffic
light as object tracking tasks using the Interactive Multiple
Model (IMM). Bach et al. [34] proposed a multiple traffic
light recognition system using the Dempster-Shafer Theory of
Evidence. Labeled Multi-Bernoulli filters were implemented to
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Fig. 3. Our System overview.

update the bounding boxes and color statuses simultaneously.
Gómez et al. [30] described traffic light color transition rules
using Hidden Markov Model (HMM) to improve the detection
results. Nienhüser et al. [14] also considered modeling the
temporal information by HMMs. and they specifically focused
on the patterns of German traffic signals.

Similar to the work of [14] and [30], our method uses an
HMM-based framework to enhance temporal stability. The
difference is that we focus on the colored countdown numbers
instead of only the three-color traffic signals. The status
dimension in our problem is larger, and the system logic is
more complex.

C. V2X-Based Traffic Light System

The problem sets of traffic light perception are different in
the field of V2X communication. V2X communication systems
provide more accurate and richer information to associated
autonomous vehicles. The crucial points turn to what equip-
ments for communication, such as visible light communication
devices [35] and wireless devices [36], and what communi-
cation protocols to comply, such as Dedicated Short-range
Communication (DSRC) [37] and IEEE 802.11p [38].

Signal Phase and Timing (SPaT) message [36], [39], [40],
which describes the traffic light phase of a signalized intersec-
tion, is a solution perfectly matched to our problem. The SPaT
messages are broadcasted to vehicles close to the intersection
and provide the real-time signal phase with its remaining time.
However, due to the expensive retrofit costs, our system will
still be meaningful before the popularization of V2X devices.

D. Research on Countdown Timer Traffic Light Perception

The perception topics on countdown timer traffic lights are
rarely studied. To our knowledge, there are only two related
works in the literature. Sathiya et al. [41] used a segmentation-
based color classifier on RGB space and implemented a
7-segment digit detector. Chaud et al. [42] proposed TSCTNet,
an end-to-end deep learning framework for digit detection
composed of Mask RCNN and RetinaNet. These two works
both noticed the auxiliary role of countdown timers. However,
they only considered the countdown timers under an object
detection task, and did not consider the use of temporal cues.

In this paper, we propose a state estimator for countdown
timer traffic lights, providing optimal estimates over time for
both digits and colors. Inspired by the work of [14] and [30],

we model the countdown logic into a Variable Transition
HMM (VT-HMM) [43]. The dynamic transition matrix is
probabilistically designed, based on the sojourn duration of
the traffic light state. A recursive decoding method ensures
the optimal state estimation over time.

III. SYSTEM OVERVIEW

A. Problem Formulation

Let zt1:tl be the observations of countdown timer traffic
lights from t1 to tl . These observations are composed of colors
and digits and are independent of each other. The actual states
st1:tl are hidden and cannot be directly observed. The state
estimation problem, finding the most likely estimate of the
state sequence ŝt1:tl given the available observations zt1:tl , is
modeled as a maximum a posteriori (MAP) problem

ŝt1:tl = arg max
st1 :tl

p(st1:tl | zt1:tl ). (1)

In this paper, we choose the Hidden semi-Markov Model
(HSMM), which contains sojourn durations for each state.
Additional components ft1:tl , which represent the start time
distributions (detailed in Section V-A), are appended to our
model. Our MAP problem in (1) is reformulated as

< ŝt1:tl , f̂t1:tl >= arg max
st1 :tl , ft1 :tl

p(st1:tl , ft1:tl | zt1:tl ). (2)

B. Overview of Proposed System

The overview of our system is shown in Fig. 3. Our per-
ception system is separated into three sequential steps. First, a
detector, implemented by Yolo_v5 [44], detects the region of
countdown timers from raw images at each timestamp. After
engineering optimization, it reaches 8ms/frame on NVIDIA
GTX 1080Ti with TensorRT FP16 acceleration. In this paper,
we concentrate on the system’s temporal modeling and will
not give the implementation details of our detector. Afterward,
our classifier recognizes the colors and the digits separately.
The color classifier distinguishes traffic light colors by HSV
thresholds, while the digit classifier is based on a CNN-based
digit classification network. Finally, an estimator estimates
the hidden state using all available observations. The most
likely state chain from t1 to tl noted as ŝt1:tl is estimated by
our recursive HSMM decoding method. The system output
is represented as ŝtl , the latest vertex of the best chain at
tl . Our system is online deployed on real platforms. The
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Fig. 4. Digit observations. Its space contains 0 to 9, which is equivalent to
our digit state space. A null observation is appended to cover the unobserved
cases on tens place.

details of our system’s operating consumption are described
in Section VIII-G.

Our proposed system is based on several assumptions.
The essential assumption is that our system’s input con-
tains only detection and classification noise. For instance,
bad weather and extreme lighting conditions may cause the
disability of traffic light detection and classification over the
whole sequence. These cases are not considered in this work.
Meanwhile, we assume the countdown timers are double-digit,
meaning only digits in tens and units places are considered.
In the real world, we find triple-digit countdown timers, and
some traffic light systems are specially designed so that they
do not show the countdown digits until the last few seconds of
a color. These special cases are not considered in this paper.

IV. DIGIT TRAFFIC LIGHT CLASSIFICATION

A. Color Classification

Similar to [30], our classifier distinguishes the traffic light
colors by thresholds in the HSV color space. The color
classification output is marked as Z c

∈ Cz . In addition to
the three standard traffic light colors, a status unknown is
designed for failure cases. In hue space, the color green ranges
from [50, 100] and yellow is bounded by [21, 40]. The color
red is split into two parts. The lower part is [0, 20] while
the upper one is [170, 180]. In saturation and value space, the
range of all three colors is set as [50, 255].

We firstly transform the input image into HSV color space,
and each pixel is classified with HSV thresholds. The pixel
amount for each color is counted, and the majority color wins
this vote. If the proportion sum of three colors is less than a
threshold tr = 0.005, the color status is marked as unknown.

B. Digit Classification

In this part, our classifier recognizes the 7-segment digits of
countdown timers. We select a lightweight CNN with only two
convolutional and two fully connected layers. The inputs of the
CNN are countdown timer regions, and its output Zv

∈ Dz
has 11 classes, as shown in Fig. 4, including digits from
0 to 9 and a null class for the special cases on tens place.
A pre-processing step is deployed before feeding pixels into
the network. We convert the RGB image patch (detection
bounding box) into grayscale and resize it to 32 × 32 pixels.
Since we only consider the double-digit traffic lights, we
vertically halve an input into tens and units places. The CNN
classifier separately detects two digits, and its outputs are the
inputs of our back-end state estimator.

C. Post-Processing

Before inputting the color and digit classification results into
our VT-HMM state estimator, we filter a special observation

Fig. 5. HSMM structures. The red vertexes are the states, while the green
ones are their corresponding start time distributions. The blue vertexes indicate
the observations. The vertexes marked with dashed and solid lines represent
hidden and observed variables.

with unknown color and null for both tens and digits places.
This empty observation usually occurs in two situations.
One is the traffic light blinking at the end of green lights,
and another is due to misclassification. Ambiguity happens
when designing the emission probability matrix. The system
classifies some blinking observations as empty only because
they are unobserved. They should have an equal probability
of emitting all possible states. For misclassification cases, the
emission possibility should relate to the differences between
observations. For instance, digit 1 is more likely to be false-
detected as null than digit 8.

It is demanding to balance both cases under a probabilistic
model. We filter the empty observations before inputting
classification results into our estimator. For blinking cases, no
input provides no prior information. The null state is uniformly
distributed, and meets the condition of equal probability to
every state. For misclassification cases, although we lose the
information from observations, the impact is controlled by our
further estimator design.

V. HSMM-BASED STATE ESTIMATOR

A. Variable Transition HMM

HSMM is an extension of a Hidden Markov Model (HMM),
of which the hidden process is semi-Markovian. Each HSMM
state maintains a period of time and can be correlated by
a series of consecutive observations instead of a single one.
For modeling convenience, an HSMM state is expanded as
a sequence of states with the same status to ensure one-to-
one correspondences with observations, called state segment.
A general HSMM structure is shown in Fig. 5a.

Specifically, we choose the variable transition HMM
(VT-HMM). The state stl is extended as a 2-tuple vector
stl = [vtl , dtl ]

⊤. The current traffic light status vtl is a discrete
random variable and will be described in Section V-B. The
sojourn duration dtl since entering the current traffic light
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status is a continuous random variable. To reduce the searching
complexity in a continuous space of dtl , we sample it into
several discrete searching intervals via a system frequency fsys
(commonly 10Hz). The sampling ID is marked as Di , and its
corresponding sampling range is

dtl ∈

([
dtl

]
inf,

[
dtl

]
sup

]
=

(
Di − 1

fsys
,

Di

fsys

]
. (3)

For convenience, we simplify the expression as dtl = Di .
The sojourn duration dtl is a hidden variable and cannot

be directly observed. We introduce an intermediate random
variable ts,i , representing the start time of the current status,
also the end time of the last status. The relationship between
the start time ts,i and the sojourn duration dtl is dtl = tl − ts,i ,
where tl is the observation timestamp. The modeling details
of our random variables will be described in Section VI-A.

Since our method is under a HMM-based framework, the
probability of every state chain p(st1:tl | zt1:tl ) in (1) needs to
be calculated during each update step. In order to compute the
state chain probability incrementally, we also update the dis-
tributions of the start time ts,i in update step. The distributions
are complicated to be parameterized, and we represent them
in a discrete form under a resolution of 0.01. The distribution
over ts,i is globally updated and then normalized for each
processing step. Afterward, it is truncated by the discrete
sampling range Di . The corresponding distribution component
is marked as Ftl ,i = fts,i (t), and it pairwisely used with Di
in the remainder of this paper. The model structure of our
VT-HMM is shown in Fig. 5b.

B. State Modeling and 1-Step Connection Matrix

The state of our VT-HMM is defined as Si = [Vi , Di ]
⊤.

It should be emphasized that we only mark the discrete
sampling interval Di in our state, while its corresponding
distribution Ftl ,i is also utilized. The traffic light status Vi

comprises a triplet [V c
i , V d2

i , V d1
i ]

⊤

, and V c
i ∈ Cs is the

color status. Since we focus on the double-digit countdown
timers, only tens and units places are considered, representing
as V d2

i , V d1
i ∈ Ds . The cardinality of traffic light status is

Nv = 3 × 10 × 10, and the entire volume of our state
space is Ns = Nv × Nd . The transition probability matrix
A = A(Ftl ) ∈ PNs×Ns is a dynamic matrix. Its element is
represented as

ai j = p(stl+1 = S j | stl = Si , ftl = Ftl ,i ). (4)

Due to camera orientation, traffic lights are sometimes unob-
servable for a few seconds, and their hidden states may alter
several times without observation. The transition probability
matrix should be time-related and need to be dynamically
designed. In our system, we model the transition probability
matrix A using the sojourn duration of the current state and a
1-step state connection matrix C(1)

∈ NNv×Nv . The details of
how to calculate ai j in (4) will be shown in Section VI.

The 1-step state connections C(1) are shown in Fig. 6.
An edge in C(1) represents the number of chains from Vi
to V j with only a 1-step transition. It differs from the edge in
a Markov Chain in which the value represents the transmit

Fig. 6. Our 1-step state connection matrix. The vertex color represents color
status, while the value represents the double-digit display. The transition edges
of standard vertexes are in black. The connections from special vertexes to
value 0 and 1 are marked as dashed and solid lines, respectively.

probability. There are two types of vertexes. The standard
vertexes only have one output edge, which points to the next
status following the countdown model. For instance, the vertex
[red, 2, 1]

⊤ can only be transformed to [red, 2, 0]
⊤. The

special vertexes are used at the moment of color shifting. The
start number for each color varies from traffic light equipment
settings. Since we do not load their start time priors offline in
our system, we consider that each digit status starts with the
same probability. Section I mentions that some traffic lights
end the color at 0, while some end at 1. Therefore, the vertex
for 0 has 100 output connections and 101 for 1.

One should be mentioned that the matrix dimension of C(1)

(Nv×Nv) is different from the one of A (Ns ×Ns). The matrix
C(1) is time-independent and offline generated. The connection
relationships come only from the inherent countdown logic
of traffic lights, and is not affected by the sojourn duration
Di in our state. In Section VI, we use A’s subscripts in the
expression of C(1) for convenience.

C. Observation Modeling

Our observation contains one color and two digits, repre-
senting as Zk = [Z c

k , Zd2
k , Zd1

k ]
⊤

. The cardinality of obser-
vation space is Nz = 4 × 11 × 11. The emission probability
matrix B ∈ PN×M , also known as the confusion matrix, is
static. Its component is represented as

bik = p(ztl = Zk | stl = Si ). (5)

Since its three observation components are independent, the
emission probability matrix B is decomposed as Bc

⊗ Bd2 ⊗

Bd1 , where ⊗ is the Kronecker matrix product. The element
of B in (5) is decomposed as

bik = p(Z c
k , Zd2

k , Zd1
k | V c

i , V d2
i , V d1

i )

= p(Z c
k | V c

i ) × p(Zd2
k | V d2

i ) × p(Zd1
k | V d1

i ).

The color emission probability matrix Bc
∈ P3×4 is

Bc
=

0.85 0.05 0.05 0.05
0.05 0.85 0.05 0.05
0.05 0.05 0.85 0.05

 ,
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Fig. 7. Our random variable visualization. The arrows in solid blue
represents the observation timestamp, while the ones in dashed red represent
the switching time of traffic light statuses.

where its last column is the probability from each state to
unknown observation. The elements of Bc are manually set by
experience. The 7-segment digits are encoded as 7-bit binary
strings. Their differences are measured by Hamming distance,
and the difference matrix for units place digit is

H =



0 4 3 3 4 3 2 3 1 2 6
4 0 5 3 2 5 6 1 5 4 2
3 5 0 2 5 4 3 4 2 3 5
3 3 2 0 3 2 3 2 2 1 5
4 2 5 3 0 3 4 3 3 2 4
3 5 4 2 3 0 1 4 2 1 5
2 6 3 3 4 1 0 5 1 2 6
3 1 4 2 3 4 5 0 4 3 3
1 5 2 2 3 2 1 4 0 1 7
2 4 3 1 2 1 2 3 1 0 6


.

Its element hik represents the numbers of substitutions from
Sd1

i to Zd1
k . Afterward, the emission probability matrix for

units place Bd1 ∈ P10×11 is derived by projecting H into
the probability space, as Bd1 = exp(−α ∗ H), where α

is a hyper-parameter to control the magnitude of emission
probability. Each row of Bd1 needs to be normalized. The
emission probability matrix for the tens places Bd2 ∈ P10×11

is almost identical to as Bd1 . The only difference is that null
appears instead of 0 in some traffic lights for the tens digits.
The distance between 0 to null should be eliminated, so we
change H(1, 11) = 0 for Bd2 .

D. Initialization

The start probability of our VT-SMM model is 5 ∈ PNs .
Since each state has an equivalent probability of being visited
at the beginning, the initial value for each element of 5 is
set as πi =

1
Ns

. The start time distribution Ftl is separately
calculated and maintained for each state samplings. Since there
is no prior information for the initial frame, we initialize Ft1
as a uniform distribution according to each sampling sojourn
duration Di .

VI. DYNAMIC STATE TRANSITION PROBABILITY

A. n-Step Transition Modeling

According to the countdown logic, the sojourn duration
for each traffic light status should be 1 second. However,
this cannot be guaranteed due to production errors. Therefore,

Fig. 8. PDFs and CDFs of t(n)
e,i . In this visualization, the start time follows a

uniform distribution ts,i ∼ U(−0.1, 0.0) and the Gaussian uncertainty is set
as σ = 0.15.

we model the sojourn duration as a Gaussian random variable
d ∼ N (1, σ 2), where σ is the duration uncertainty. Consider-
ing the start time of the i th traffic light status as ts,i , the end
time t (1)

e,i after 1-step transition, also the start time of the next
state, is a random variable. Their relationship is t (1)

e,i = ts,i +d ,
and is visualized in Fig. 7a. The probabilistic density function
(PDF) of t (1)

e,i is the convolution between the distributions of
random variables ts,i and d, where

ft (1)
e,i

(t) = ( fts,i ∗ fd)(t) =

∫
∞

−∞

fts,i (τ ) fd(t − τ)dτ.

The operator (∗) is the convolution operator.
As we mentioned in Section V-B, traffic lights may be miss

detected, and the system jumps over several statuses without
observation. Similar to 1-step transition cases, we model the
end time for an n-step transition t (n)

e,i as the combination of ts,i
and n independent random variable d, representing

t (n)
e,i = ts,i + d + · · · + d︸ ︷︷ ︸

n

. (6)

A visualization of a 2-step transition case is shown in Fig. 7b.
The PDF of the n-step transition in (6) is calculated as

ft (n)
e,i

(t) = ( fts,i ∗ fd ∗ · · · ∗ fd︸ ︷︷ ︸
n

)(t) = ( fts,i ∗ fdn)(t), (7)

where fdn(t) = N (n, nσ 2). Its cumulative distribution func-
tion (CDF) is

Ft (n)
e,i

(t) = ( fts,i ∗ Fdn)(t), (8)

where Fdn(t) is the CDF of fdn(t). The PDFs and CDFs of
t (n)
e,i with n = 1, . . . , 5 are visualized in Fig. 8. A special case

of n = 0, meaning no transition happens, remains the previous
distribution, where ft (0)

e,i
(t) = fts,i (t).

B. The Probability of the Number of Transitions

In this section, we calculate the probability

p(ni j | Ftl ,i , tl+1) = p(n | stl = Si , stl+1 = S j , Ftl ,i ), (9)

representing the chance of that a n-step transition happens
between tl and tl+1 with the start time distribution Ftl ,i .
We change the view to a random variable te,i , the end time
of Si and also the start time of S j . It is intuitive to find
t (n)
e,i = ts, j = tl+1 −dtl+1 . The sojourn duration dtl+1 is updated
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at time tl+1 and is determined by the sampling range D j in
S j using (3). The estimated end time t̂e,i is decomposed as

t̂e,i ∈

[[
t̂e,i

]
inf,

[
t̂e,i

]
sup

)
=

[
tl+1 −

[
dtl+1

]
sup, tl+1 −

[
dtl+1

]
inf

)
.

By definition in (6), the start time ts,i and ts, j ought to differ
by d × n exactly (n = 0 without any transition, n = 1 if
adjacent statuses are both observed, and n > 1 if missing
observations of several statuses). We set t (n)

e,i = t̂s,i + d × n,
where t̂s,i is the estimated start time calculated in our recursive
decoding method from the last update, and it contains prior
information on all the past observations. The probability in (9)
is transferred to the chance that t

(ni j )

e,i is bounded by t̂e,i ,

p(ni j | Ftl ,i ) = Pr(
[
t̂e,i

]
inf < t

(ni j )

e,i ≤
[
t̂e,i

]
sup)

= F
t
(ni j )
e,i

(
[
t̂e,i

]
sup) − F

t
(ni j )
e,i

(
[
t̂e,i

]
inf), (10)

where F
t
(ni j )
e,i

is derived from (8) using the sampling start time

distribution Ftl ,i = fts,i (t).
We set a maximum number of transitions nmax to constrain

the transition range. If the duration of losing observation is
too long that nmax-step transitions happen, the system restarts
because the uncertainty σ 2nmax is considered extremely high.

C. Dynamic State Transition Matrix

We mark the 0-step connection matrix as C(0)
= I ,

indicating no transition happens. The n-step connection matrix
C(n) is calculated by the 1-step connection matrix C(1), where

C(n)
= C(1)

× · · · × C(1)︸ ︷︷ ︸
n

.

The element in C(n) may exceed 1 because there exists
several possible paths when crossing different colors. For
instance, there are two possible chains from [red, 0, 1]

⊤ to
[green, 2, 1]

⊤ with a 2-step transition. One possible interme-
diate state is [red, 0, 0]

⊤ while the other is [green, 2, 2]
⊤.

The element of our transition probability matrix in (4) is
decomposed as

ai j = max
{
Pr(Si → S j with ni j -transitions)

}
ni j

= max
{
I(c(ni j )

i j > 0) · p(ni j | tl+1, Ftl ,i )
}

ni j
, (11)

where I(·) is an indicator function that equals 1 if the input
is true and 0 otherwise. The estimated number of transitions
from the i th to the j th state at tl is

ni j = arg max
ni j

{
I(c(ni j )

i j > 0) · p(ni j | tl+1, Ftl ,i )
}

ni j
. (12)

The distribution Ftl ,i is different for each row of A(Ftl ).
We calculate A(Ftl ) row by row rather than using matrix
operations. Each row of A(Ftl ) is independently normalized.

VII. RECURSIVE HSMM DECODING METHOD

In this section, we introduce an recursive decoding method
for our VT-HMM model based on the Viterbi algorithm [45].

A. Model Factorization

The decoding problem, formulated in (2), is transformed as

< ŝt1:tl , f̂t1:tl > = arg max
st1 :tl , ft1 :tl

p(st1:tl , ft1:tl | zt1:tl )

= arg max
st1 :tl , ft1 :tl

p(st1:tl , ft1:tl , zt1:tl )

p(zt1:tl )

= arg max
st1 :tl , ft1 :tl

p(st1:tl , ft1:tl , zt1:tl ). (13)

An incremental expression decomposes the joint distribution
in (13). If the previous estimates ŝt1:tl and f̂t1:tl are given, the
estimate ŝtl+1 and f̂tl+1 are represented as

< ŝtl+1 , f̂tl+1 >

= arg max
stl+1 , ftl+1

p(stl+1 , ftl+1 , ŝt1:tl , f̂t1:tl , zt1:tl+1)

= arg max
stl+1 , ftl+1

p(stl+1 , ftl+1 , ztl+1 | ŝt1:tl , f̂t1:tl , zt1:tl )

= arg max
stl+1 , ftl+1

p( ftl+1 | f̂tl , stl+1 , ŝtl )

p(ztl+1 | stl+1)p(stl+1 | ŝtl , f̂tl ). (14)

Like the classical Viterbi algorithm, for a possible state
sampling, our decoding algorithm calculates the chain with
the highest probability of ending at this certain state under
the observation ztl . After updating all the states, the one
with the highest probability chain is chosen as the estimation
result. We define a time-variant vector δtl , whose element δtl ,i
represents the maximum probability for all the possible chains
from t1 to tl with the i th state at time tl . For the initial frame,
the maximum probability δt1,i is set as δt1,i = πi bik , and the
initial start time distributions Ft1,i is uniformly distributed. For
other frames, we firstly estimate ŝtl+1 in (14) with

ŝtl+1 = arg max
stl+1

p(ztl+1 | stl+1)p(stl+1 | ŝtl , f̂tl ),

and then update f̂tl+1 in (14) with

f̂tl+1 = arg max
ftl+1

p( ftl+1 | f̂tl , ŝtl+1 , ŝtl ).

Algorithm 1 shows our decoding method for a single update.

B. Distribution Update

Suppose the estimated state ŝtl = Si and its corresponding
distribution f̂tl = Ftl ,i , the estimated state at tl+1 is ŝtl+1 = S j .
The distributions are updated under a Bayes filter framework.
In the propagation step, the start time distribution f̄tl+1 is
predicted with ftl . There may exist several chains from state
Si to S j with different numbers of transitions. The optimal
ni j is derived via (12), and the predicted distribution f̄tl+1

is calculated by (7). In the update step, f̂tl+1 is calculated
with f̄tl+1 . Since the distribution of each sojourn duration is
bounded by its sampling interval, we model the observation
distribution within the corresponding sampling interval as a
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Algorithm 1 One Step of Our Recursive HSMM
Decoding Method

Input: δtl , Ftl , ztl+1 = Zk , B,
Output: δtl+1 , Ftl+1 , ŝtl+1

1 Calculate A(Ftl );
2 foreach j ∈ {1, . . . , Ns} do

// Update δtl+1, j
3 δtl+1, j = max

1≤i≤Ns

[
δtl ,i · ai j

]
b jk ;

4 imax = arg max
1≤i≤Ns

δtl ,i · ai j ;

// Update Ftl+1, j
5 if S j = Simax then

// No state shifting
6 Ftl+1, j = Ftl ,imax ;
7 else

// State shifting
8 Propagate F̄tl+1,imax ;
9 Update Ftl+1, j by (15) and (16) ;

10 end
11 end
12 jmax = arg max

1≤ j≤N
δtl+1, j ;

13 ŝtl+1 = S jmax .

uniform distribution, where

f z
tl+1

=


1[

t̂e,i
]

sup −
[
t̂e,i

]
inf

,
[
t̂e,i

]
inf < t ≤

[
t̂e,i

]
sup,

0, otherwise.
(15)

The start time distribution is estimated as

f̂tl+1 = η · f z
tl+1

· f̄tl+1 , (16)

where η is the normalization to ensure the property of a PDF.

VIII. EXPERIMENTAL EVALUATION

A. Dataset

For experimental evaluation, we collected a toy dataset
with 10 sequences. The total frame size is 1702. The first
7 sequences are collected by a camera module (Fig. 9b)
attached to our autonomous vehicle platform (Fig. 9a), daily
operated in Wuhu, China. The rest 3 sequences are captured
by a smartphone in Shenzhen, China. The capture frequency
of both devices is 10Hz. We split the dataset into two levels
according to lighting conditions and image quality:

• The normal part contains Sequence 01, 05, 06, 08, 09,
and 10. The image patches of countdown timers are over
40×40 pixels. Images are captured under good lightning
conditions, and digits are clear to be recognized.

• The hard part contains Sequence 02, 03, 04, and 07.
Since our platform is far from the traffic lights, the
countdown timer regions have averagely 20 × 20 pixels.
Some sequences are captured at dusk, and these images
are in low contrast. Some digits are blurred due to the
platform’s motion.

The stability of the input detection boxes affects the clas-
sification and estimation modules. To simulate the errors of
bounding box detection, we add random pixel offsets on
our manually-labeled detection ground truth, with different
magnitudes of 0-pixel, 3-pixel and 5-pixel errors, respectively.

Fig. 9. Our platform and camera module. The Sensing SG2-AR0231C-
0202-GMSL-H30S (marked in red box) is used to collect our toy dataset.
This camera has a horizontal field of view (FOV) of 30◦ and a vertical FOV
of 16◦. The camera’s effective focal length (EFL) is 11.9mm.

B. Implementation Details

The parameter settings in our system are as follows. System
frequency fsys is set as 10Hz, equal to the data capturing
frequency. The hyper-parameter for digit observation α = 4,
and the maximum number of transitions nmax = 5. The
number of duration samples Nd is related to the sojourn
duration d and its uncertainty σ = 0.15. The sample range
ought to cover all possible duration, and we use the 3-sigma
empirical rule of Gaussian distribution. The maximum number
of required samples is Nd = (E(d) + σ × 3)/(1/ fsys) = 13.

The distribution update step in Section VII-B is extremely
time-consuming. For each update, our system needs to calcu-
late the distributions Ns times (practically Ns = 3900 with our
parameter settings), which contains Ns × nmax = 19500 times
of convolution operations. In order to run the system online
with limited computing resources, we also provide a simplified
version of our system implementation. We simplify the distri-
bution update step by assuming that the sampling distribution
at any time is uniformly distributed. The distribution’s range
is fixed to the sampling interval 1

fsys
and the distribution is

represented as U(0, 1
fsys

) after shifting the lower boundary to 0.
The convolutions between uniform and Gaussian distributions
are calculated offline to save time. The comparison of time
consumption between these two versions will be given in
Section VIII-G. We also provide a theoretical discussion on
our simplification later in that section.

C. Evaluation Metrics

We introduce two metrics to assess the performance of our
traffic light estimation system:

• Overall Accuracy (OA) is the portion of the positive
estimations among the total number of estimations, where

OA =
number of positives

number of total frames
.

• Keyframe Accuracy (KA) is the portion of the pos-
itive keyframe estimations among the total number of
keyframe estimations, representing as

KA =
number of keyframe positives
number of total key frames

.

The keyframes are frames within 5 seconds before traffic
lights switch colors, during which human drivers tend to
react in advance.

We also separately evaluate the performance of color and digit
on these two metrics, nominated as OAc, OAd , KAc, and OAd .
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TABLE I
ACCURACY EVALUATION ON REAL-WORLD DATA

TABLE II
SEQUENCE-WISE ABLATION STUDY

D. Evaluation: Real-World Experiments

1) Evaluation Methods: The work on countdown timer
traffic lights has rarely been researched before. As mentioned
in Section II, we have found only two works on this topic
from Sathiya et al. [41] and Chaud et al. [42]. We design
a Baseline method referring to Sathiya’s work. We replace
the RGB thresholds in their color classification part with
our HSV thresholds. In the digit classification part, we first
transform RGB images to grayscales and then binarize the
images using Otsu’s method [46]. Afterward, we use their
seven key regions and encode the status of the LED tubes as
a vector. Finally, the 7-bit vector is classified as 11 classes in
Dz by finding the minimum difference in Hamming distance.
We do not reproduce TSCTNet from Chaud as a comparison
baseline because we cannot ensure its performance without
their training data and parameter tuning details.

We nominate our complete state estimation system as
Our-C+E. To ablatively demonstrate the performance of our
estimator, we evaluate the intermediate results given by our
classifier (Our-C), which is also the input of our estimator.
The evaluation results on real-world data are shown in Table I.

2) Color Accuracy: The color results of Baseline are equal
to Our-C’s because they share the same color classification
module. Their OAc and KAc are uncorrelated to detection
errors because our color classifier uses overall color voting and
is resistant to large detection offsets. Differently, our estimator
jointly estimates the colors with digits. The color accuracies of
Our-C+E are correlated with digit accuracies and are slightly
lower than the previous two methods. In normal sequences
with no detection offset, the color accuracy is equivalent to
the other two because the input digit accuracy is extremely

Fig. 10. Case study of Sequence 01 with 0-pixel and 3-pixel detection
errors. The two digits in each block represents the digits in tens and units
places. The character ’[]’ indicates the null. The color statuses are red and
we omit the color information to clearly display. The block marked as red
represents the fault estimates. The number in the lower right corner indicates
the estimated sojourn duration sampling ID.

high. If we add 5-pixel random offsets, the OAc of Our-C+E
drops to 0.995 due to an input digit accuracy of 0.786. This
phenomenon is more evident in hard sequences, where the
OAc drops to 0.898 with an input digit accuracy of 0.442.

3) Digit Accuracy: Unlike color accuracies, digit accuracies
are highly related to detection errors. When the simulated
detection offsets augment, the digit accuracies for all three
methods reduce, both in normal or hard sequences. Digit
accuracies of hard sequences are generally lower than those of
normal sequences. First, the hard sequences have more blurry
images, directly affecting CNN classifier results. Second, the
hard sequences are captured far from the traffic lights. The
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detection box size of hard sequences (approximately 20 ×

10 pixels) is much smaller than the normal ones (generally
50 × 30 pixels and can be up to 100 × 50 pixels for sequence
08, 09, and 10). Digit accuracy in hard sequences drops more
severely with the augmentation of detection offsets.

Among the three methods, Our-C+E best performs on digit
accuracies for all data cases. Our-C provides inferior results
to Our-C+E but is better than Baseline. Baseline suffers from
a high expectation of the input detection boxes because it
needs to wrap the entire digits within the boxes and has
a low tolerance to noise. Meanwhile, the input digits for
Baseline should be upright because deformations caused by
capturing perspective are invalid. Therefore, the overall digit
accuracy of Baseline is only 0.487, even in normal sequences
without detection error. Our-C performs well for low detection
noise (0-level and 3-level) in normal sequences, and Our-C+E
has limited performance gains. However, for 5-level noise in
normal sequences and all the hard sequences, Our-C+E has
significantly improved from Our-C (maximumly from 0.442 to
0.615 of OAd in hard sequences, 5-pixel noise).

4) Total Accuracy: Our-C+E best performs among the
three methods in overall and keyframe accuracies. Even for
the most challenging cases (hard sequences, 5-pixel noise),
the OA of Our-C+E still improves 39.14% (from 0.442 to
0.607) than Our-C’s. The OA and KA of Our-C are equal to its
OAd and KAd because its color classification is hardly wrong,
and the major influence derives from the digit classification
faults. The OA and KA of Our-C+E are slightly lower than
its digit accuracies because of the color accuracy decline
we mentioned before. However, the impact is limited, and
the OA and KA of Our-C+E are still higher than those of
Our-C.

To better study the performance improvement, we make an
ablative comparison on OA and KA between Our-C and Our-
C+E. The sequence-wise results are shown in Table II. For
most sequences, Our-C+E enhances the output of Our-C and
significantly improves the accuracies, meaning that Our-C+E
efficiently corrects a certain portion of false classifications.
In some special cases (Sequence 01 and 07), Our-C+E per-
forms worse than Our-C. At the beginning of a sequence, our
estimator has not enough input to stabilize the estimation over
time. When classification faults happen at this stage, it takes
several frames to recover from these erroneous inputs, and the
estimates during the correction procedure are wrong.

5) Case Study: A special case can be found in Table II.
In Sequence 01, our estimator reaches an overall accuracy
of 0.978 with 3-pixel detection errors, while the one with
0-pixel detection errors is only 0.951. This phenomenon is
caused by the system falsely detecting digit 7 as 6. A fragment
of the estimation chain is given in Fig. 10. Although the
input sequence with 3-pixel errors has more false detec-
tions, our estimator can correct most of these errors. For the
0-pixel case, our estimator cannot find a reasonable hidden
chain through the frequent changes from 17 to 16. The
estimator believes that the current optimal chain was wrongly
chosen and switches it several times during this sequence
fragment. This can be solved by training a powerful digit
classifier.

Fig. 11. Misclassification simulation.

E. Evaluation: Misclassification Simulations

1) Simulation Settings: To test the performance boundaries
of our estimator, we generate synthetic datasets by sampling
the color and digit classification outputs with different noise
levels. The synthetic datasets are generated from our dataset’s
longest sequence (Sequence 01). The color noise level is
defined following the emission probability, derived from the
color emission matrix in (6). It is nominated as pc, and the
color noise emission matrix is represented as

Bc
noise =

1 − pc × 3 pc pc pc
pc 1 − pc × 3 pc pc
pc pc 1 − pc × 3 pc

 .

The probability of reserving the ground truth in the generated
sequence is 1 − pc × 3. Otherwise, it can jump to any
other color, all with a probability of pc. The digit noise
level, nominated as αnoise, is designed by changing the hyper-
parameter α. Its corresponding digit emission matrices for
tens and units places are Bd2

noise and Bd1
noise, respectively. For

convenience, we express αnoise in the base of 10.
During the simulation, we fix one type of noise level and

then traverse another to imitate the outputs of different classi-
fiers. For each color-digit noise pair, we sample 50 synthetic
sequences. The best color classifier has a color noise level
of pc = 0, and the best digit one shares a digit noise level
of αnoise = 101 (with the average self-emission possibility of
1.000). The worse classifiers follow a random guess test, of
which pc = 0.25 for color and αnoise = 10−2 (with the average
self-emission possibility of 0.094, close to 1/11) for digit.

2) Color Noise Simulation: In color noise simulation, we
traverse pc to imitate the outputs of different color classifiers.
Overall accuracy (OA) statistics are shown in Fig. 11a. Our
estimator performs better under massive color noise. When
color classifier accuracy is high (over 0.64), OA is hardly
affected by color noise. Without digit noise (OAd = 1.000),
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Fig. 12. Data missing simulation. The phenomenon that 0-pixel accuracies
are lower than 3-pixel ones is explained by the case study in Section VIII-D.

our estimator give an accuracy of over 0.9 even when the
color classifier only has an accuracy of 0.4. Our estimator has
a sudden performance drop when the color classifier almost
fails (below 0.4), which can be considered a system failure.

3) Digit Noise Level Evaluation: The relationship between
input digit accuracy and output accuracy is shown in Fig. 11b.
Our estimator has good performance under certain digit noise.
It provides stable and precise results when the digit accuracy
exceeds 0.5. Similar to the evaluation of color noise, the output
accuracy of our estimator decreases when digit noise increases.

4) Noise Factor Comparison: Comparing the performance
on color and digit noise, a better digit classifier more severely
impact our estimator. The sudden drop starts with a digit
accuracy of 0.4, and our estimator thoroughly failed (OA close
to 0) with a digit classifier of 0.1. For color noise, the system
resists noise and provides at least an output accuracy of 0.2.

Three principal reasons make our estimator more sensi-
tive to digit noise than color noise. First, our classification
module is a one-color but two-digit classifier. When digit
noise increases, the probability that the results of both digit
classifiers are correct is much lower than a single one. Second,
color classification is an easier task than digit classification.
Color is more likely to be correctly ‘guessed’ when the color
is difficult to be classified. Meanwhile, the switching logic of
digits is more complicated than colors, increasing state esti-
mation’s difficulty. Third, colors change less frequently than
digits. Digit combination changes per second, while colors
can last for dozens of seconds. Our estimator stabilizes color
estimation by repeatedly observing colors within a period.
Fast-switching digits with certain noise make our estimator
provide several candidate chains with similar probabilities.

F. Evaluation: Data Missing Simulations

1) Random Loss Simulation: We evaluate our system’s
ability to resist accidental data loss. Sequence 01 is chosen as
the test sequence, and we randomly drop its frames to generate

Fig. 13. Approximation of input distributions. The distribution in red is used
in our simplified version, a convolution between U(−0.1, 0) and N (0, 0.152).
We also give the distribution by replacing the uniform function to Direc Delta
functions at t = −0.1 (blue) and t = 0 (yellow), constructing the possible
boundary in our standard version.

50 samples for each missing ratio. We also evaluate the data
missing resistance with different levels of detection errors. The
relationship between system overall accuracies and missing
ratios is shown in Fig. 12a. Our system is stable with low
detection errors (0-pixel and 3-pixel), and the output accuracy
hardly drops. In 5-pixel cases, the output accuracy decreases
with the data loss ratio, but it still maintains a relatively high
accuracy of over 0.8, even when losing 90% of input frames.
When the noise level is high, the information that our estimator
needs is also high. The lack of adequate information causes
this accuracy decrease in retrieving the hidden chain from
detection noises. When dropping a large number of frames,
the system cannot receive enough observations to determine
the hidden chain, finally leading to our system’s accuracy drop.

2) Long-Term Loss Simulation: We also simulate long-term
data missing cases caused by the change of the camera’s
view or the transient lags from camera drivers. Sequence
01 is chosen. We randomly select a starting frame and drop
the following 10, 20, 30, 40, and 50 frames of the starting
frame. The results of long-term data missing are shown in
Fig. 12b. Our system is hardly affected by the long-term data
missing cases. Although our system fluctuates in the presence
of detection errors, the performance has limited degradation
because the internal timer of the traffic light is accurate. The
cumulative error for 5 seconds count is insignificant and is
perfectly covered by our sojourn duration modeling.

G. Evaluation: System Simplification

We execute our countdown timer traffic light system on a
PC with an Intel Core i5–8600K@3.60 GHz CPU and 16G
RAM. The system of our PC is Ubuntu 18.04. The classifier is
implemented in Python without GPU devices, and the average
time consumption is 1.012ms per image. The estimator is
implemented in C++, and the time consumption of the
original implementation is averagely 205.25ms per frame. For
the simplified version, the time consumption is reduced to
80.45ms, which guarantees the real-time performance at 10Hz.

To compare the output accuracies of these two implemen-
tations, we select Sequence 01 and 02 to compare their per-
formance differences. In Sequence 01, both implementations
have the same output accuracies on the three detection errors.
In Sequence 02, the result of the complete implementation has
a little drop to 0.294 with 5-pixel detection errors. However,
this difference cannot indicate the pros and cons because both
implementations have already failed in this sequence.
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For a theoretical discussion, both implementations share
comparable results due to our parameter settings. Two prin-
cipal factors contribute to their implementation equivalence.
First, the end time distribution fte,i , is Gaussian-like distributed
(Fig. 8). The input distribution can hardly affect the output
distribution, and the end time distribution is similar to the
initial Gaussian distribution. The PDF and CDF of the output
distribution using a uniform input distribution are visualized in
Fig. 13. We also give the output distributions by replacing the
uniform inputs to Dirac Delta functions δ(x) and δ(x + 0.1),
which have impulses at 0 and −0.1 respectively. The output
CDF from δ(x + 0.1) is the upper bound of all possible input
distributions, while the one of δ(x) constructs the lower bound.
According to (10) and (11), we respectively calculate ai j with
these three distributions and find that the largest difference of
ai j can be 0.0505 at time 0.83. The difference in probability
is insignificant and can hardly impact our system. Second,
we update the distribution of a sampling interval by cutting
a portion from the previous output distribution. Considering
the 3 − σ law, the valid range of the Gaussian distribution
for a 1-step jump is σ × 6 = 0.9, which is 9 times larger
than the cutting interval (0.1 in our parameter settings). This
phenomenon is more obvious during n-step jumps, and makes
the cutting distributions flat. Therefore, the input distributions
can be approximated as uniform distributions.

IX. CONCLUSION

This paper proposes a state estimation system for count-
down timer traffic lights, which embeds temporal countdown
cues into the VT-HMM framework. Dynamic transition rela-
tionships are probabilistically built, and the best color and digit
combination estimate is decoded under an recursive approach.
Our system has been evaluated by extensive experiments and
shown its stability and noise immunity over time. Simulations
have also studied misclassification and data missing cases.
A simplified version is provided for real-time performance.

There are also several limitations of our work. First, our
method only treats detection and classification errors. It cannot
handle the failure sequences under bad weather and extreme
lighting conditions. Second, our system is hard to be online
if the countdown timer has over three digits, or if more than
one countdown timers need to be processed.

Two directions for future research are proposed. One is to
propose novel modelings or lightweight decoding algorithms
to handle the huge state cardinality of our states. Another
is to evaluate system output’s confidence online and actively
change processing frequency. The system can actively drop its
processing frequency to save computing resources.
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